

Some of Europe's Activities on photo-electrochemical devices and systems

Prof. Sophia Haussener

Laboratory of Renewable Energy Science and Engineering Ecole Polytechnique Fédérale de Lausanne

EPFL Technical Solar Fuel Approaches (Non-Biological)

- Thermal and photon-driven, and combinations thereof

EPFL Theoretical Efficiency Limits

Lin et al., in review;

Gutierrez et al., Sust Energy & Fuels, 7, 2021;

Tembhurne, Nandjou, Haussener, Nature Energy, doi: 10.1038/s41560-019-0373-7 24

Output power of PEC at 474 kW/m²: 27 W Current density in electrolyzer component: 0.88 A/cm² Current density in photoabsorber component: 6.04 A/cm² Efficiency: 17.1% solar-to-fuel

Cooling channel assembly

• O₂ outlet

Insulating tube

Electronic conductor

• Sweep gas inlet

Anodic Ti flow plate

Cathodic Ti flow

plate

H₂ outlet

Water inlet

-2 cm

00

0/0 00

00 10

Gaske

Solar glass •

PV

GDL

Copper ribbon

Catalyst coated

membrane

Insulating base

EPFL Comparison

Dynamic and online tool: – <u>http://specdc.epfl.ch/</u> and <u>http://solarfuelsdb.epfl.ch</u>

LEGEND							
Fill color - PV / photoabsorber material	Boundary color - EC material		Symbol shape - PV / photoabsorber and EC configuration				
All III-V	Rare metal-based (expensive)	0	2J, integrated PVs and catalyst	+	3J, integrated PVs and catalyst		
Partial III-V	Abundant (cheap)		2J, integrated PVs, wired catalyst	Δ	3J, integrated PVs, wired catalyst		
All Si			2J, non-integrated PVs or catalyst	0	3J, non-integrated PVs or catalyst		
Partial Si							
Oxides and others							

Tembhurne, Nandjou, Haussener, Nature Energy, doi: 10.1038/s41560-019-0373-7, 2019

Haussener, LRESE

EPFL **Scaling: From W to kW Power**

EPFL **Operational Versatility**

Operation for multiple seasons:

1000

Predicted dynamic operational characteristics experimentall confirmed

EPFL Operational Performance

Date	Average	Oper.	η_{fuel}	$\eta_{thermal}$	η_{IPEC}	m_{H_2}	Power	Peak	Peak H2	Mean
	DNI	time						power	prod.	DNI (at
	$[W/m^2]$	[h]	[%]	[%]	[%]	[kg]	[kW]	[kW]	rate [NL/min]	peak) [W/m ²]

This is a heat-fuel-oxygen co-generation system Potential for:

- Co-generation of heat/electricity/fuel/oxygen
- Potential for grid-supported operation during night
- Potential for grid-supported operation for low irradiation intensity

EPFL

http://www.sohhytec.com

Electricity/(Seasonal) storage

Boutin, Patel, Kecsenovity, Suter, Janaky, Haussener, Adv. Energy Mat., 2022.

HydroGEN Workshop 2022

EPFL Alternative Chemistry

- Do design guidelines (thermal integration, concentrated radiation) also apply to CO₂ reduction?
- Confirmation of design approach with silver catalyst in zero-gap gas diffusion electrode (GDE) configuration

SZT:

EPFL CO₂ Reduction with Concentrated Light

• Typical experimental run

Typical 20 min experiment at 341 suns with the integrated PEC cell.

- S_{CPV} : 0.92 cm². Q_{CO2} : 312 sccm. Averaged T_{water} : 55° C.
- \diamond : lamps switch on.
- : lamp switch off.

* : activation with 10 cm³ of 1 M CsOH solution in 1:3 isopropanol/water mixture.

EPFL CO₂ Reduction with Concentrated Light

• Playing with irradiation concentration

Haussener, in review, 2022

Haussener, LRESE

Haussener, LRESE

16/36

Isaac Holmes-Gentle

el2

÷---

pa1

SolarFuelsDB

EPFL **SolarFuelsDB**

- Open, machine-readable database on solar fuel device demos
- Was launched at our workshop in December 2021
- Currently includes PEC for hydrogen
- Required the development of classification system

EPFL Solar-to-hydrogen vs. date published

Taxonomy terms: Nielander, A. et al. A taxonomy for solar fuels generators. Energy & Environmental Science 8, 16–25 (2015).

EPFL Solar-to-hydrogen vs. date published

18/36

() SolarFuelsDB

EPFL Matching Voltages

HydroGEN Workshop 2022

laussener,

Jia, J. *et al.* Solar water splitting by photovoltaic-electrolysis with a solar-tohydrogen efficiency over 30%. *Nature Communications* **7**, 13237 (2016).

Taxonomy

- PV-biased Electrosynthetic Cell
- PV-biased Photo-electrosynthetic Cell
- Photo-electrosynthetic Cell
- PEC-biased Photo-electrosynthetic Cell
- PEC-biased Electrosynthetic Cell

EPFL Preliminary trends – Size of devices O SolarFuelsDB

Tembhurne, S., et al. A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation. *Nature Energy* **4**, 399–407 (2019).

EPFL Photo-current density

HydroGEN Workshop 2022

EPFL Solar concentration

Taxonomy

- PV-biased Electrosynthetic Cell
- PV-biased Photo-electrosynthetic Cell
- Photo-electrosynthetic Cell
- PEC-biased Photo-electrosynthetic Cell
- PEC-biased Electrosynthetic Cell

Haussener, LRESE

EPFL Electrochemical current density

Taxonomy

- PV-biased Electrosynthetic Cell
- Photo-electrosynthetic Cell
- PV-biased Photo-electrosynthetic Cell
- PEC-biased Electrosynthetic Cell

Total experiment time vs. date publish SolarFuelsDB

Taxonomy

- PV-biased Electrosynthetic Cell
- PV-biased Photo-electrosynthetic Cell
- Photo-electrosynthetic Cell
- PEC-biased Photo-electrosynthetic Cell
- PEC-biased Electrosynthetic Cell

EPFL Bibliographic analysis

USA - United States of	KOR - Korea
America	PRT - Portugal
SR - Israel	SWE - Sweden
DEU - Germany	CHN - China
TA - Italy	POL - Poland
NLD - Netherlands	SAU - Saudi Arabia
CHE - Switzerland	AUS - Australia
GBR – UK of Great Britain	BEL - Belgium
JPN - Japan	SGP - Singapore

Bubble charts on map – number of articles

Institution-based "social network"

26/36 Haussener, LRESE

EPFL Activities in Europe - Consortia

- Canary Islands: PV/wind/ocean-EC, water desalination for hydrogen in transportation, MW-scale, 9 partner
- PEC for water and CO₂ splitting, 13 partner
- PEC for oxo-chemical production, 14 partner SunCechem
- PEC for hydrogen, 1m² scaled version, 5 partner FOTet_2
- PEC for CO₂ reduction without OER, 14 partner DECADE
- PEC+PC+EC for water and CO₂ splitting, 14 partners
- Solar-driven chemistry, 1 billion flagship in preparation
- PEC and PC for water splitting and beyond, 14 partners
- PEC and thermochemistry for storable fuels, 9 partner

27/36

SEAFUFI

HydroGEN Workshop 2023

EPFL Activities in Europe – Three Selected Activities

HZB

HZB: Keisuke Obata, Xinyi Zhang, Babu Radhakrishnan, Ibbi Y. Ahmet, Roel van de Krol, Fatwa Abdi

 $\ensuremath{\text{TU}}\xspace$ Berlin: Michael Schwarze, Tabea A. Thiel, Reinhard Schomäcker

Funding:

- Deutsche Forschungsgemeinschaft (DFG), Excellence Cluster "UniSysCat"
- Helmholtz Association, Excellence Network "ExNet-DD24"
- Helmholtz Energy Materials Foundry (HEMF)

RESEARCH FOR GRAND CHALLENGES

TZ

HELMHOL

HydroGEN Workshop 2022

EPFL Coupled hydrogen production and hydrogenation

- Hydrogen produced by PEC is used *in situ* to hydrogenate feedstock to valuable chemicals and decrease LCDH
- Case study: hydrogenation of itaconic acid (IA) to methyl succinic acid (MSA) with homogeneous Rh-based catalyst
- Rate of ${
 m H_2}$ production by PEC matches well with hydrogenation rate ightarrow ideal for coupling these processes
- Heat integration enhances the hydrogenation kinetics
- Flexible to switch to other hydrogenation reactions by simply exchanging catholyte (contains catalyst + feedstock)

Haussener,

Assumptions: STH = 3%, 3.4 kWh/day/m²

- H₂-to-MSA conversion efficiency as high as 60% demonstrated using photo-electrochemically produced H₂
- Coupled approach does not show any deactivation of MSA production, whereas direct electrochemical hydrogenation terminates after ~120 min.
 - Net energy analysis shows the benefit of coupling hydrogenation process to PEC: energy payback time decreases from 28 to 5 years (assuming STH = 3% and modest H₂-to-MSA conversion efficiency of 12%)

.

K. Obata et al. submitted

EPFL Hybrid photocathodes for H_2 evolution: Optimizing the interfaces

TiO₂ ALD coating passivates the inorganic semiconductor support and stabilizes the grafting of the catalyst onto its surface

EPFL Dye-sensitized photocathodes for H₂ evolution and CO₂ valorization

Chavarot-Kerlidou, Artero et al., ACS Appl. Mater. Interfaces 2021

Integrated with BiVO₄ photoanode in a unassisted PEC device for water splitting $(STH = 4.6 \times 10^{-3}\%)$ and CO_2 -to-CO conversion $(STF = 1.3 \times 10^{-2}\%)$

Chavarot-Kerlidou, Artero et al., unpublished

EPFL Self assembly and mononotoring of an artificial leaf

34/36

Nocera and coll, Science 2011

Elaboration of a single $[Co\{WS_4\}_2]^{2-}$ precursor for simultaneaous photodeposition of both catalysts

Tran, Artero et al., unpublished

Performances : 2-3% STH

Simplified fabrication with deposition of 2 distinct catalysts from the same solution Monitoring with bipotentiostat allowed to gain insights into the operational conditions

EPFL PEC H2 production coupled to oxidation of solid waste streams

0

PET powder

Bhattacharjee et al., Adv. Functional Materials, 2021

EPFL Acknowledgements

FNSNF Swiss National Science Foundation

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra FLO\

CHEM

Bundesamt für Energie BFE Swiss Federal Office of Energy SFOE sophia.haussener@epfl.ch http://lrese.epfl.ch http://specdo.epfl.ch http://specdc.epfl.ch http://solarfuelsdb.epfl.ch

Saurabh Tembhurne Fredy Nandjou Isaac Holmes-Gentle Clemens Suter Etienne Boutin Mahendra Patel Alexandre Cattry Silvan Suter Roberto Valenza Francesca Lorenzutti

University of Szeged:

Csaba Janaky Egon Kecsenovity **SoHHytec:** Ehsan Rezaei

