-

HydroGEN

Advanced Water Splitting Materials

HydroGEN 2.0: Solar Thermochemical Pathway
A Consortium on Advanced Water Splitting Materials

Anthony McDaniel, Andrea Ambrosini — Technology Lead (SNL)

March 01, 2021 Benchmarking Workshop

N[ @&

@ m M Lawrence Livermore
o ) SRNL




HydroGEN 1.0: Seedling Project Support

GI'CH Node Labs\

iL

%

".ZI’NREL

Sandia

—~e _
National *“‘!b

Laboratories Idaho National Laboratory

SRNL

SAVANNAH RIVER NATIONAL LABORATORY

M Lawrence Livermore

\ National Laboratory/

HydroGEN: Advanced Water Splitting Materials

Support
through:

G | e

Personnel
Equipment
Expertise
Capability
Materials
Data

Arizona State 0 * @
University
<7, MINES %Lj
& ucsh

Northwestern
University

UF|FLORIDA

Greenway Energy LLC /




N,

>

HydroGEN 2.0: Laboratory Directed Activities

« Critically assess STCH technology viability.

01

008
008

“ oot

002

0

10°

Compound energy
formalism (CEF): t

1\ dGyo,
'(ﬁ)x Fra G

e
l}s»(rn.l:ss !
0, %
»

e Duonopsoss

-
Calecton 3183 14,

10' 10? 10 10

— B xp,—m(B) xp, + )

u = Ln[pref/p02)/2

Reduction
reactor

Legend
= MO, mass flow
== N, and O, mass flow
——» H,0 and H mass flow
Solar input

—

> Heat flow inlet
> Internal heat flow
0> Heat flow losses

=Pwork outlet

Re-oxidation
reactor
Tox, AHox)

H,0

HydroGEN: Advanced Water Splitting Materials

Perform High-throughput DFT Calculations
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} Develop Machine Learning Model

(SNL)
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HydroGEN 2.0:
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19 Team Members from 6 HydroGEN Nodes and 1 University

NREL:

First Principles Materials Theory for
Advanced Water Splitting Pathways. (S La ny)

— Role of charged defects in generating configurational
entropy
— Comp. screen material thermodynamics
 Sorolauatras sniessard (D Ginley)
— Controlled material defect engineering for DFT validation
and descriptor testing
— High resolution operando X-ray metrology at SLAC

e Additional personnel
— Bob Bell, Anuj Goyal, Phil Parilla, Dan Plattenberger, Sarah
Shulda, Nick Strange

LLNL:

Ab Initio Modeling of Electrochemical

Interfaces. (T.Ogitsu)

— Large-scale ab initio simulations of material properties

HydroGEN: Advanced Water Splitting Materials

SNL:

High-Temperature X-Ray Diffraction and
* Complementary Thermal Analysis. (E‘COker)
— operando XRD, validate structure models

— Thermal analysis, validate thermo models

Laser Heated Stagnation Flow Reactor for H
Characterizing Materials Under Extreme Conditions. (A M C Da nie l)

— Characterize and quantify redox performance
— Assess material’s efficacy for water splitting

(J.Sugar)

— Characterize material morphology, composition, and
structure with advanced electron microscopies and
spectroscopies.

e Additional personnel
— Andrea Ambrosini, James Park, Jamie Trindell, Matt Witman
(SNL)
— Ellen Stechel, Alberto de la Calle Alonso, Ivan Ermanoski
(ASU)

® Advanced Electron Microscopy.
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STCH Seedling Projects are Fulfilling the Vision of the Consortium/EMN
Model (HPC, ML, theory guided material design)

* Found RP phases that modify redox
thermo.
— DFT screening of defect formation energy

— Thin film combinatorics for compound discovery
— High throughput colorimetric screening
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* Use machine-learned models coupled to

DFT to discover new redox materials.
— Rapidly screen materials based on machine-
learned predicted stability
— Formulate descriptor(s) for predicting reaction
network energetics and equilibrium
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* Incorporate second redox active sublattice to
modify thermo.
— DFT method to predict Ad a priori using simple
sublattice model formulations
— Discover compounds with optimized thermo (3H, 3S)

Arizona State
University

Potential cations redox-
active simultaneously

* Use high-throughput Density Functional
Theory to discover new redox materials.

— Screen >10* known compounds for ground state

stability/synthesizability and favorable thermo at
reduction T<1400 °C
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Northwestern
University

compounds have been
“discovered” using HPC,
ML, and DFT

* Water splitting
functionality has been

predicted formulations

computational tools are
now in place to rapidly
expand the known STCH

\material space

* One dozen potential STCH

verified in several of these

* Validated high-throughput

J
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é-b Critically Assess STCH Pathway Viability
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* Develop and validate testing protocols. 3
— Synthesis + mapping 06-T-pO, equilibrium state space
— Leverage Benchmarking project deliverables
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== MO, mass flow
— Model cycle performance > Nyand O massflow (st
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— Evaluate potential to meet DOE technology S S separaton
Heat flow inlet PH,
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HydroGEN: Advanced Water Splitting Materials = Work outlet 6



(:b New Tools for STCH Community and Expected Outcome

* Software to render a robust thermodynamic material model.
— TGA data + AH; from DFT + ideal solution entropy
— Expression for Gibbs energy derived from the Compound Energy Formalism (CEF)
- <R—1T) x df{g"" = (po = B xp1 — In(B) x p + 0)
— Bayesian Compressed Sensing to determine best CEF model terms supported by data

* Detailed process model to establish cycle conditions at optimal STH efficiency.

— Generic plant design (mass and energy balances) e
St d d ' d t. t- ol,th,l% Reduction i ﬁQNzlsep,ineff
— Standardized operating assumptions ) o T paie L
— Material thermodynamic model MO, vas el removal [
* Aselect group of known and best materials > o iow
. . == N, and O, mass flow Re-oxidation )
produced by HydroGEN projects will be s ot masow | ot L
. . Solar input v roggn
evaluated for their potential to meet DOE STCH | .. ...
§H,0, oy
technology performance targets. e ow Vovnsne
I:>Workoutlet
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|dentify New Materials with High Capacity - High Yield H,
Production Using DFT + Machine Learning

Perform High-throughput DFT Calculations

(NREL)

Search space 0—
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Screening
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7 Oxides: TMs, Lanthanides, N\
group | and Il as alloying elements
Stoichiometry families:
Binaries, ternaries and quaternaries in
K possible crystal structures J

1 Oxidation State, Magnetic moment, A

Bandgap, Dielectric constant,
KDensity of States, Bulk Modulus, etc./

4 Yield Pyy0/Py; vs. Capacity (AS), A
0 vacancy concentration vs. T, pO,

’ Develop Machine Learning Model ’ Optimize Property

0 vacancy formation energy
Reduction Entropy, etc. )

‘ Predict candidates

(SNL) (STCH)
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* Develop a materials search strategy for optimizing the capacity/yield tradeoff.
— High-throughput data generation and ML training expanding BEYOND perovskites

* Find new materials using the ML model and characterize by detailed calculations,
synthesis, and experimental validation.
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éb New Tools for STCH Community and Expected Outcome

Large database of crystal structures and material properties derived from high-
throughput DFT calculations.

* Graph Convolutional Neural Network (GCNN) formalism to perform regression tasks
on database of crystal structures.
— Predict defect properties of candidate materials

° Thermodyna mic modeling_ Wl. Crystalstructur(-::: 3. Graph convolutional

(or message passing)
neural network:

— Identify optimal STCH materials

Nodes/ Target Property, 5. Identification of
Edges e.g. AH gefect promising candidates
Node/edge for experiments

* Demonstrate theory-guided design a e

of materials using ML to establish X] i\ x ix
correlations between

. . 2. Convert to graph 4. High-throughput screening
thermochemical properties and representation o o of configutons
underlying structure/composition
features for large number of
compositions and structures.
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(:b STCH Deliverables in HydroGEN 2.0

e Establish materials evaluation protocol to rigorously assess the potential for
candidate materials to meet DOE technology performance targets.

— A standardized material characterization and evaluation workflow under a single “roof” that
uses a computational methodology that accounts for material-specific cycle dynamics and plant
operational modality

* Theory-guided design of materials using ML to establish correlations between
thermochemical properties and the underlying structure/composition features that
result in optimal material performance.

— ldentify and understand how structural features, composition, and defect dynamics engender
high capacity — high yield behavior in materials

— Expand high-throughput search strategy to include large number of crystal structures

HydroGEN: Advanced Water Splitting Materials
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