

Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop

Breakout Session Summaries Low Temperature Electrolysis (LTE)

March 2 – 3, 2021

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Session ID	Topic	Lead
Session ib	Торіс	Leau
LTE-1	LTE Technology Roadmap Review & Discussion- Catalysts	Shannon Boettcher (Univ of Oregon)
LTE-2	Technology Roadmap Review & Discussion- Porous Transport Layer (PTL) Tech	Nemanja Danilovic (LBNL)
LTE-3	Techno-Economic Analysis - LTE	Brian James (Strategic Analysis, Inc)
LTE-5	LTE Cell Test Methods & Reference Cell	Marcelo Carmo (Juelich)
LTE-7	Technology Roadmap Review & Discussion - Membranes	Andrew Motz (Nel Hydrogen)

Session ID: LTE-1

Title: LTE discussion - Catalysts

Summary of discussion

- Catalysts for PEM and AEM
- 2. Ionomer needs in catalyst layer
- 3. How to distinguish catalyst and ionomer contributions to performance in catalyst/ionomer layer
- 4. Understanding H⁺/OH⁻ concentration control within catalyst/ionomer layer

Consensus and/or dissenting opinions

- Consensus Ir and Pt catalysts work for PEM. Direction should be toward lower loadings rather than non-PGM in acid
- 2. Dissenting opinions should AEM be compared to PEM or liquid alkaline?

Key Take-Aways

- Better catalyst dispersion is key to achieving lower loadings
- 2. The durability of Ir in PEM systems with lower loadings (< 1 mg cm⁻²) needs to be understood in MEA configuration
- 3. Need to close gap between AEM performance and durability

Session ID: LTE-1

Title: LTE discussion - Catalysts

Name	Affiliation	Name	Affiliation
Shannon Boettcher	U. Oregon	Adlai Katzenberg	LBNL
Grace Lindquist	U. Oregon	Guido Bender	NREL
Raina Krivina	U. Oregon	Rutendo	
Bryan Pivovar	NREL	Mutambanengwe	
Jens Oluf Jensen	DTU Energy	Nem Danilovic	LBNL
Krzystof Lewinski	3M	Sonya Calnan	HZ Berlin
Jiangjin Liu	LBNL	Mahak Dhiman	Rutgers
George Roberts	Nel Hydrogen	Claire Mitchell	TFP hydrogen
Saad Intikhab	NREL	Andrew Motz	Nel Hydrogen
Arthur Dizon	LBNL	Elliot Padgett	NREL
Cy Fujimoto	SNL	Michael Ginsberg	Columbia University
Paul Kiernan	WL Gore & Assoc.	Matthias Ernst	Gasteiger group,
David Peterson	HFTO	Matthias Kornherr	Gasteiger group,
Shaun Alia NREL		Waterias Rominon	TUM
Adam Nielander	Stanford	Sachin Gaikwad	
Kathy Ayers	Nel Hydrogen	Steve Dietz	
Wei Li	West Virginia U.	Yifei Li	

Name	Affiliation
Garrett Huang	
W.T. Gibbons	
Nafiseh Rezaei	
Marcelo Carmo	Juelich
Chris Capuano	Nel Hydrogen
Alberto Pilenga	
Lena Buehre	
Aldo Gago	DLR
Chulsung Bae	RPI
Tomek Bednarek	
Carolin Klose	
Lillian Hensleigh	
Earl Wagener	Tetramer

Session ID: LTE-2

Title: Porous Transport Layer (PTL) Tech Roadmap

Summary

- Commercially available materials include Bekaert (fiber), Mott (sinter) serve as baseline
 - Performance differences and optimal structures have not been determined. This is what we have based on filtration industry
 - -We still don' tknow what the optimal structure might be wrt thickness, porosity, particle size etc
 - -The interface between PTL/CL must be thoroughly interrogated
- · Materials needed to advance PTLs:
 - Need to have similar performance and durability, mechanical properties, Changes away from Ti PTL materials need to consideration durability, cost to upscale and coating lifetime if applicable
 - Need to understand how low in PGM coating and uniformity can go or replace with PGM-free if equivalent performance and durability
 - -For coatings how long does it take to apply and what is the cost of the process in addition to PGM content cost
- The mechanical properties of PTLs are important to withstand compressive forces acting on it and its land/channel support. Need to define the mechanical failure mode and then testing to find the metric to assess.
- The corrosion testing in aqueous environments is more aggressive than in the MEA based on local environment measurements (pH and V)
- MPLs are common in fuel cells but have not been optimized for electrolyzers, nor is there consensus on their ultimate need.
 - -MPLs may prove useful for stability of PTLs if thinner PTLs are used
 - -They may hinder oxygen removal and water flow too much.

Consensus/Dissenting

- Academia desires more specific design parameters from industry to lead investigation into new/different materials and requirements of the materials in service conditions with proprietary cells
- Researchers could/should create benchmark tests that would measure fundamental properties that are of interest to industry.
- -Mechanical properties
- -Corrosion assessment of coatings
- -Coating uniformity requirements and specs
- More information is still needed in regard to the usefulness of MPLs for electrolysis.
 - -Wrt to two phase flow and catalyst layer electronic conductivity, as well as swelling of the membrane/ionomer into PTL

Key Take-aways

- When investigating new materials, the function of the material, durability and cost at scale-up need to be considered.
- We don't know what the ideal PTL structure is that we would want to scale in production (beyond current baseline)
- •The mechanical properties of PTLs is just as important as it's other functions as a cell component.
- •The usefulness of MPLs is still questionable.
- Differential pressure electrolyzer and un-pressurized system will have different PTL needs

- 1. Determine mechanical property test for PTL
- 2. Determine corrosion resistance test for PTL and coating
- 3. Determine two phase flow properties of PTL
- 4. Determine properties and limitations of PTL/CL interface
- 5. Determine PTL structure function relationships
- 6. Determine MPL sturture/function relationship
- 7. Find alternative PTL materials
- 8. Find alternative PGM-free coating materials, or minimum required PGM

Session ID: LTE-2

Title: Porous Transport Layer (PTL) Tech Roadmap

Name	Affiliation
Kathy Ayers	Nel Hydrogen
George Roberts	Nel Hydrogen
Christopher Capuano	Nel Hydrogen
Aldo Gago	German Aerospace Center (DLR)
Earl Wagener	Tetramer Technologies LLC
Adam Nielander	Stanford
Adam Weber	LBNL
Adlai Katzenberg	LBNL
Ahmet Kusoglu	LBNL
Akiteru Maruta	Technova
Andrew Motz	Nel Hydrogen
Arthur Dizon	Lawrence Berkeley National Lab
Bryan Pivovar	NREL
Carol Klose	Hahn-Schickard

Name	Affiliation
Cy Fujimoto	Sandia National Labs
David Peterson	DOE HFTO
Marcelo Carmo	Juelich
Elliot Padgett	NREL
Gang Wu	SUNY Buffalo
Garret Huang	Georgia Tech
Jens Oluf Jensen	Technical University of Denmark
Krzysztof Lewinski	3M
Lena Buehre	University of Hannover
Mahak Dhiman	Rutgers
Matthias Ernst	Technical University of Munich
Matthias Kornher	Technical University of Munich
Jens Oluf Jensen	DTU Energy
Meital Shviro	Juelich

Session ID: LTE-2

Title: Porous Transport Layer (PTL) Tech Roadmap

Name	Affiliation
Claire Mitchell	TFP hydrogen products
Paige Shirvanian	TNO
Riana Krivina	U Oregon
Sachin Gaikwad	Shell India Market Pvt Ltd
Sridevi Govindarajan	Shell India Market Pvt Ltd
Tomasz Bednarek	European Commision
Wei Li	West Virginia University
Saad Initkhab	NREL
Guido Bender	NREL
James Young	NREL
Shannon Boettcher	U Oregon

Name	Affiliation
Nafiseh Rezaei	Queen's University
Paul Kiernan	WL GORE
Rutendo Mutambanengwe	Queen's University
Shaun Alia	NREL
Steve Dietz	TDA Research
Vinh Nguyen	ASU
Yifei Li	Rutgers University
Jiangjin Liu	LBNL
Grace Lindquist	U Oregon
Arend de Goot	TNO
Jennifer Glenn	Nel Hydrogen

Session ID: LTE-3

Title: LTE TEA Breakout

Summary of discussion

- Questions of current analysis
 - Are fixed oper. costs correct? (PEM should be lower than ALK)
 - Discussion of pressure, thinner membranes, and X-over
- Desire to lowering PGM usage
- Plate coatings: current options
- AEM: durability vs. capex tradeoff
 - What is voltage goal at 1A/cm2 (with Pt vs. non-PGM cathode)

Key Take-Aways

- Need thinner membrane (but must watch X-over and affect on polarization curve)
- Pt is costly, but most promising to reduce rather than replace with non-PGM
 - Reduce as coating and catalyst
- Ir needs to be reduced 10x
- Decent base case but many unanswered trade-offs:
 - Durability vs. PGM loading
 - Current Density vs. CapEx vs. Efficiency
 - Cheap Electricity vs. Capacity Factor

Consensus and/or dissenting opinions

- For base material that will corrode, coatings need to be perfect
- Getting beyond Ir and Ti will be difficult for PEMthrifting or supporting such materials may allow cost reduction
- May not be able to eliminate PGM. But how low is low-enough?
- Maintain PGM coatings performance while reducing loadings (and thus costs)
- 2V in oxygen rich environment is a big challenge

- Explore manufacturing development to drive down costs. (3D printing, molding, etc.)
- Try to learn-from/make-use-of solar industry lessons
- Need to understand durability:
 - impact of alternate/cheaper materials,
- Need to stabilize OER catalyst during on/off cycling (which will be more sensitive to catalyst dissolution at low loadings)

Session ID: _LTE-3

Title: LTE TEA Breakout

Name	Affiliation
Bryan Pivovar	NREL
Mark Ruth	NREL
Paul Kiernan	WL Gore
Alex Badgett	NREL
George Roberts	Nel Hydrogen
Elliot Padgett	NREL
Grace Lindquist	U Oregon
Michael Ginsberg	Columbia University
Andrew Motz	Nel Hydrogen
Kathy Ayers	Nel Hydrogen
Christopher Capuano	Nel Hydrogen
Rutendo Mutambanengwe	
Adlai K	LBNL
Guido Bender	NREL
Cy Fujimoto	Sandia
Mahak Dhiman	Rutgers
Claire Mitchell	TFP Hydrogen Products

Name	Affiliation
Shannon Boettcher	Univ Oregon
Karl Gross	H2 Tech
David Peterson	DOE/HFTO
Cassidy Houchins	Strategic Analysis Inc.
Jiangjin Liu	LBNL
Amin Nouri	Greenlight Innovations
Matthias Kornherr	TUM
Arend de Groot	TNO
Barr Zulevi	Pajarito Powder
Jens Oluf Jensen	DTU Energy
Shaun Alia	NREL
Krzysztof Lewinski	3M
Arthur Dizon	LBNL
Saad Intikhab	NREL
Mahak Dhiman	Rutgers

Session ID: LTE-5

Title: LTE Cell Test Methods & Reference Cell

- Summary of Discussion
- MEA and CCMs
- How should MEAs/CCM be stored?
- Storage depends on the processing and the size.
- Humidity should also be considered as the membranes can/will expand with hydration and if the hydration needs to be controlled this could be a concern.
- There are some industry protocols that exist for "cleaning" MEAs after longer term storage.
- Can or should components be reused?
- Typically this is only done out of necessity.
- EIS measurements should always be taken if reusing components to evaluate the appropriateness of this process.
- Test cells need to work for both performance and degradation experiments, which might warrant research into different cell materials.
- Is there any need to further refine harmonized test protocols for pol. Curves?
- Possibly reverse steps 1 and 2 of the protocol or add a step prior to step 1.
- Step 2 should be reworded as either, optional, relevant or based on manufacturer requirements. Any processing of the membrane done by researchers, such as applying electrodes, could also affect this step.
- Better definition of the acceptable deviation in water flow, temperature and pressure is needed.
- A better definition of when operating conditions reach stability is needed.
- Temperature should be reported as inlet and outlet temperature, rather than just temperature in general.

Session ID: LTE-5

Title: LTE Cell Test Methods & Reference Cell

Key Take-Aways

- The importance of harmonizing:
 - Test protocols
 - Reference components and cells
 - Performance and durability data
- Create trust and allow meaningful comparability of results (apples with apples)
- Aim is to create a simple reference point for data comparison within and outside a given institution
- Current activities (interest) within:
 - DOE (2B, H2New), IEA-Annex30, EU-JRC, DOE
- Importance to keep the continuity of such initiatives and its harmonization

Consensus (C) and/or Dissenting (D) Opinions

- C- To adopt the earlier results/experiences within Annex30
- **C-** Further refining of defined protocols important
- D- Not clear how valid the information is, since technology is under constant development
- C- Agreed that such protocols need to be re-visited after a given period
- C- Join forces (H2New + Annex30) to allow continuity and makes use of synergy

- Continue discussion in a smaller group (clear reporting information, break-in procedure, flow, EIS)
- Intensify discussion to define the strategy to combine efforts (H2New + Annex 30, and others)
- Definition of common protocol and a reference cell for PEM electrolyzers
- Work on possible MEA alternatives as reference (challenges with ordering E300 from Greenerity)
- Long-term testing and eventually ASTs
- Brainstorm the possibility to start a harmonization of AEM electrolyzers
- List of key names and contact points

Session ID: LTE-5

Title: LTE Cell Test Methods & Reference Cell

Name	Affiliation
Kathy Ayers	Nel Hydrogen
Marcelo Carmo	Juelich
Guido Bender	NREL
George Roberts	Nel Hydrogen
Akiteru Maruta	
Matthias Kornherr	Technical University of Munich
Mahak Dhiman	Rutgers
Paige Shirvanian	TNO
Rutendo Mutambanengwe	
Adlai Katzenberg	LBNL
Alberto Pilenga	JRC
Ben Johnson	TFP Hydrogen
Christopher Capuano	Nel Hydrogen
Chulsung Bae	RPI

Name	Affiliation
Claire Mitchell	TFP hydrogen products
Chris Topping	Tetramer
Cy Fujimoto	Sandia National Labs
David Peterson	HFTO
Garrett Huang	Georgia Tech
Grace Lindquist	University of Oregon
Jens Oluf Jensen	DTU Energy
Jiangjin Lui	LBNL
Krzysztof Lewinski	3M
Lena Bühre	University of Hannover
Matthias Ernst	Technical University of Munich
Michael Ginsberg	Columbia University
Nemanja Danilovic	LBNL
Micha Ben-Naim	Stanford

Session ID: LTE-5

Title: LTE Cell Test Methods & Reference Cell

Name	Affiliation
Paul Kiernan	WL GORE
Saad Intikhab	NREL
Sruthi Kattamanchi	Shell India Market Pvt Ltd
Xueqi Pang	Columbia University
Sachin Gaikwad	Shell India Market Pvt Ltd

Name	Affiliation
Shaun Alia	NREL
Sridevi Govindarajan	Shell India Market Pvt Ltd
Wei Li	West Virginia University
Aldo Gago	German Aerospace Center (DLR)
Elliot Pedgett	NREL

PEMWE

Session ID: LTE-7

Title: Technology Roadmap Review &

Discussion- Membranes

Summary of discussion

Durability

- o Compression and tension in polymers are different processes and have different failure modes
- During testing need to take into account: active area is under different pressure than the area directly under the seal; pressure fluctuates during testing (can lead to membrane puncturing)
- Fluoride leaching not detected when measured at the anode, so the chemical degradation of the membrane is not confirmed. However, leached cations will likely cause damage to the membrane
- Initiative to use thinner membranes to improve cell resistance (thinner membrane = less resistive) can result in lack of durability due to poor mechanical properties. Potential solution: to use reinforced membranes. But: mechanical reinforcement can decrease conductivity
- $\circ~$ Going below 50 μm in membrane thickness might improve performance but decrease durability Characterization
- Tests done ex situ on dry membranes are not relevant. Ex situ tests on hydrated membranes under elevated temperatures are complicated
- H2 crossover rate is assumed to be constant at constant pressure, but some data reports suggest a dependence on current
- o H2 sensors get wet during operation and cannot measure H2 levels
- o Thinner membranes will result in more H2 crossover

Key Take-Aways

- To achieve performance targets, we should go as thin as possible – we need to investigate performance and durability trades of thinner membranes
 - Mechanical reinforcement trade-offs should be considered
 - $\circ~~50~\mu m$ might be an optimal thickness for the membrane
- H2 permeation will become increasingly important to understand as thinner membranes are used
 - High H2 crossover leads to cell efficiency loss that has to be offset by operating at high current density
- Lack of ex situ and in situ tests for the mechanical properties of membranes (specifically compression tests)

Consensus and/or dissenting opinions

- Does the observed amount of H2 crossover presents a safety concern?
 - ✓ Yes it might for thinner membranes
 - ✓ No, the bigger concern is cell efficiency loss
- Should we aim for thinner membranes or stick to the current optimal thickness?
 - ✓ If performance suffers from reinforcement, no point in using thinner membranes
 - ✓ Reinforcement might improve mechanical properties of thinner membranes (same performance as thicker membranes but better durability)

- Need to develop thinner, robust, electrolysis specific membranes
- Develop ex-situ testing that is representative of common failure modes
- Understand the phenomena that is causing observed increase in H2 permeation

AEMWE

Session ID: LTE-7

Title: Technology Roadmap Review &

Discussion- Membranes

Summary of discussion

Supporting electrolytes

- o improve performance of non-PGM catalysts
- Use of highly concentrated KOH requires hazmat precautions and regular maintenance; leads to membrane degradation through OH- attack or precipitation
- K2CO3 is less corrosive than KOH. But: causes pH gradients in the membrane, CO2 release, and precipitation. pH at the cathode is high even in a dilute electrolyte
- For the purpose of advancing technology might stick to using KOH if cheap H2 can be produced
- Supporting electrolyte gets access to more active site: better catalyst utilization
- Another strategy to improve non-PGM AEMWE performance: new ionomer/membranes and GDL design
- Increasing the stack number to achieve the performance of PEMWE may not be cost-effective even though each cell stack alone is cheaper in materials than a single PEM stack

Consensus and/or dissenting opinions

- Are shunt currents an issue for the system?
 - ✓ No, system design allows to avoid them at a low cost

Key Take-Aways

- Separation of pure-water systems and systems that use supporting electrolyte: different design principles and considerations
 - o Systems with supporting electrolyte are more of a near term technology
- For AEMWE with supporting electrolytes, it is preferred to use dilute electrolyte to avoid related issues
- Some membrane degradation issues might be solved by testing cathode feed
- The investigation into pH gradient in the system is desirable
- There is no AEM equivalent to Nafion in performance and durability

Action Items

 Perform a TEA analysis on Stack cost, durability, and current density (assume voltage parity with current PEM ~1.9 V) to understand the minimum requirements to achieve cost parity.

Session ID: LTE-7

Title: Technology Roadmap Review & Discussion- Membranes

Name	Affiliation
Grace Lindquist	University of Oregon
Krzysztof Lewinski	3M
Nghi Nguyen	Arizona State University
Bryan Pivovar	NREL
Matthias Ernst	Technical University of Munich
Nemanja Danilovic	LBNL
George Roberts	Nel Hydrogen
Rutendo Mutambanengwe	Queen's University
Gang Wu	University at Buffalo, SUNY
Ahmet Kusoglu	LBNL
Sruthi Kattamanchi	Shell India Market Pvt Ltd
David Peterson	DOE-HFTO
Adam Weber	LBNL
Earl Wagener	Tetramer Technologies

Name	Affiliation
Kathy Ayers	Proton Onsite (Nel Hydrogen)
Barr Zulevi	Pajarito Powder
Jiangjin Liu	LBNL
Micha Ben-Naim	Stanford
Christopher Capuano	Proton Onsite (Nel Hydrogen)
Paige Shirvanian	ECN part of TNO, Netherlands
Charles Dismukes	Rutgers University, Waksman Institute
Claire Mitchell	TFP Hydrogen
Arthur Dizon	Lawrence Berkeley National Lab
Michael Ginsberg	Columbia University
Katie Randolph	DOE
Elliot Padgett	NREL
Nick Valckx	Agfa
Xueqi Pang	Columbia University

Session ID: LTE-7

Title: Technology Roadmap Review & Discussion- Membranes

Name	Affiliation
Guido Bender	NREL
Lena Buehre	U Hannover
Amin Nouri	Greenlight Innovation Corp.
Marcelo Carmo	Julich
Wei Li	West Virginia University
Chris Topping	Tetramer
Matthias Kornherr	Technical University of Munich
Mahak Dhiman	Rutgers, The State University of NJ
Akiteru Maruta	Technova Inc, Japan
Paul Kiernan	WL Gore
Shaun Alia	NREL
Arend de Groot	TNO
Huyen Dinh	NREL

Name	Affiliation
Ben Johnson	TFP Hydrogen
Chulsung Bae	Rensselaer Polytechnic Institute
Anders Laursen	Rutgers, NJ; RenewCO2
Raina Krivina	University of Oregon
Cy Fujimoto	Sandia National Labs
Saad Intikhab	NREL