

Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop

Breakout Session Summaries Photoelectrochemical Water Splitting (PEC)

March 2 – 3, 2021

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Session ID	Торіс	Lead
PEC-1	Device and System Integration: New opportunities and Design Spaces for PEC Water Splitting	Todd Deutsch (NREL)
PEC-2	Strategic Analysis TEA Review	Brian James (Strategic Analysis)
PEC-3	Durability in Materials and Devices	Francesca Toma (LBNL)
PEC-4	Photocatalyst and Particle Based Systems	Shane Ardo (UCI)
PEC-5	Roadmap Review and Discussion	Daniel Esposito (Columbia) Frances Houle (LBNL)
PEC-7	Standard Hardware for Bench-Scale and Sub-Scale Testing	James Young (NREL)

Session ID: PEC -01 <u>Title: PEC-Device and System Integration: New</u> opportunities and Design Spaces for PEC Water Splitting

• Summary of discussion

- Topic 1 : Energy islands, military applications, valorize O₂, water vapor splitting,
- Topic 2: New reactor designs, manufacturability, H₂ carriers, water vapor, HPEV, optical engineer
- Topic 3: Understand how PEC systems scale, optics research, thermal integration, lifetimes

Consensus and/or dissenting opinions

- Mostly consensus on the urgency to push out systems to understand scaling challenges
- We still need more basic research on components (absorbers, membranes, catalysts, etc.) and interfaces between components because the ideal PEC system has not yet been identified

• Key Take-Aways

- Several opportunities were identified that could increase the value proposition for PEC vs. PV/EC
- New reactor designs are needed with novel approaches to H₂ collection and pressurization
- There is a need for understanding how PEC systems scale in addition to materials research on component lifetimes and costs

Action Items

- Continue momentum from this Workshop by gathering folks in additional discussions, first late spring 2021
- Gather community to write a perspective paper on the new science/research agenda identified targeting submission summer 2021

Session ID: PEC -01

Title: PEC-Device and System Integration: New opportunities and Design Spaces for PEC Water Splitting

Name	Affiliation	
Nicolas Gaillard	Univ. of Hawaii	
Olivia Alley	LBNL	
Roel Van de Krol	HZB	
Shu Hu	Yale	
Sophia Haussener	EPFL	
Vikash Kumar	EMPA	
William Stinson	Univ. of Columbia	
Yanfa Yan	Univ. of Toledo	
Zejie (Justin) Chen	UC Irvine	
Zhaoning Song	Univ. of Toledo	
James Vickers	DOE	
Aditya Mohite	Rice	
Alex King	Univ. of Berkeley	
Artur Braun	EMPA	
ydroGEN: Advanced Water Splitting Materials		

Session ID: PEC -01

<u>Title: PEC-Device and System Integration: New</u> <u>opportunities and Design Spaces for PEC Water Splitting</u>

Name	Affiliation
Brian James	Strategic Analysis Inc.
Todd Deutsch	NREL
Isaac Holmes-Gentle	EPFL
Shane Ardo	UC Irvine
CX Xiang	Caltech
John Lewis	NREL
Micha Ben-Naim	Stanford
Nico Gaillard	HNEI
Bruce Parkinson	Univ. of Wyoming
Jennie Huya-Kouadio	Strategic Analysis
Katie Hurst	NREL
Mark Ruth	NREL
Mark Spitler	Former DOE
Nathan Neale	NREL

Session ID: PEC -01

<u>Title: PEC-Device and System Integration: New</u> <u>opportunities and Design Spaces for PEC Water Splitting</u>

Name	Affiliation
Austin Fehr	Rice
Cassidy Houchins	Strategic Analysis
Charles Mismukes	Rutgers
Chris Topping	Tetramer
Daiki Nishiori	ASU
Daniel Esposito	Univ. of Coumbia
Eric Miller	DOE
Frances Houle	LBNL
Huyen Dinh	NREL
Jason Cooper	LBNL
Hengfei Gu	Rutgers

Summary of discussion	Consensus and/or dissenting opinions
 Validity of key parameters T4 PEC absorber costs too low Need more realistic/achieved lifetimes Purity of water Startup safety: purge H2 bed with N2? Outdoor environment impact on cost (hail, etc.) Get out of TEA Practical T4 absorber drives to high concentration BOP/concentrator is large cost contributor Possibility of lower-cost solar concentrators Very far-off vision of magic low-cost perovskite 	 TEA studies Sensitivity to pressurization Concentration: link capacity factor with optics cost, go to 1000x Show impact of passive vs. forced convection Clearly show materials vs. manufacturing costs TEA in terms of energy input/output (in addition to cost) Tradeoff between durable/expensive vs. cheap/replaceable materials. TEA on replacement interval. Explore long-term operation cost (specifically plastic degrad. under sunlight and stretching) Very large gap between expensive T4 with concentration and vision of stable/low-cost materials (that don't currently exist). Need to do something different.
 Key Take-Aways Need to be innovative, very different ideas needed Need to make something of high value (chlorine?) Possibly operate at very low current density, made of cheap materials. Possibly vapor operation. Solar Redox flow battery approach 	 Access to tools to make manufacturing cost analysis more user-friendly. Often black box.
How can we leverage night-time to decrease costs?	Explore:
PV electrolysis is tough to beat. PV costs have come down significantly. Can we learn from that?	 Redox couples to achieve compression Plug & Play/Modularity to reduce cost
When producing at pressure, biggest gain is the first 10 bars. (use mech. compression after that)	Maximize roll-to-roll processing

- Optical engineering
- Leverage advances in (TV) display technology? (TCO on glass)

٠

Next big thing: Perovskites

Name	Affiliation
Brian James	Strategic Analysis Inc.
Todd Deutsch	NREL
Isaac Holmes-Gentle	EPFL
Shane Ardo	UC Irvine
CX Xiang	Caltech
John Lewis	NREL
Micha Ben-Naim	Stanford
Bruce Parkinson	Univ. of Wyoming
Jennie Huya-Kouadio	Strategic Analysis
Katie Hurst	NREL
Hengfei Gu	Rutgers
Mark Ruth	NREL
Mark Spitler	Former DOE
Nathan Neale	NREL

Name	Affiliation
Nicolas Gaillard	Univ. of Hawaii
Olivia Alley	LBNL
Roel Van de Krol	HZB
Shu Hu	Yale
Sophia Haussener	EPFL
Vikash Kumar	EMPA
William Stinson	Univ. of Columbia
Yanfa Yan	Univ. of Toledo
Zejie (Justin) Chen	UC Irvine
Zhaoning Song	Univ. of Toledo
James Vickers	DOE
Aditya Mohite	Rice
Alex King	Univ. of Berkeley
Artur Braun	EMPA

Name	Affiliation
Austin Fehr	Rice
Cassidy Houchins	Strategic Analysis
Charles Mismukes	Rutgers
Chris Topping	Tetramer
Daiki Nishiori	ASU
Daniel Esposito	Univ. of Coumbia
Eric Miller	DOE
Frances Houle	LBNL
Huyen Dinh	NREL
Jason Cooper	LBNL

HydroGEN: Advanced Water Splitting Materials

<u>Summary</u>

 Stability is a problem for numerous classes of high performing PEC materials Corrosion, dissolution, pitting, delamination Protocols needed for both material and device level characterizations, plus accelerated aging Theoretical calculations using combinatorics can and do predict new stable metal oxides Report a list of device characteristics in each publication, share data via data hub like 	 Value of using theory for materials development: Often Pourbaix diagram calculation predicts bulk stability; needs further work for surface predictions Do we need to accelerate aging? May be more important when 1,000 hours has been accomplished, and 10,000 hours is the aim What's the incentive for people to report data on a data hub like HydroGEN's? Consensus: require reporting of e.g. specific duration
HydroGEN's	CA for materials during publication
 <u>Key take-aways</u> Protocols exist currently to draw from, incl. HydroGEN stability protocols. Open access of further publications should enhance uptake. 	 <u>Action Items</u> Protocol for durability measurements on representative samples: CX to speak with Francesca to coordinate a multi-authored paper.
 Protocol specifics: report experimental protocol, device statistics and failure times Defined accolorated testing would allow long 	 Put a stability testing/stress test protocol together. Francesca to coordinate Daniel Esposito and Roel van de Krol interested, among many others.
stability measurements to be reported for each device	 Huyen Dinh will check on availability of HydroGEN data hub for international users
Coatings can improve stability of otherwise	Special issue on protocols in PEC in Frontiers in

I.

Session ID: PEC-03

Title: Durability in Materials and Devices

Name	Affiliation
CX Xiang	Caltech
Francesca Toma	LBNL
Shane Ardo	UC Irvine
Sophia Haussener	EPFL
Bruce Parkinson	Univ. of Wyoming
Tom Jaramillo	Stanford
Eric Miller	DOE
Todd Deutsch	NREL
France Houle	LBNL
Adam Neilander	Stanford
Shu Hu	Yale
Roel van de Krol	HBZ
Zhaoning Song	Univ. of Toledo
Nathan Neale	NREL
Nathan Neale HydroGEN: Advanced Water Splitting Materials	NREL

Session ID: PEC-03

Title: Durability in Materials and Devices

Name	Affiliation
Isaac Holmes-Gentle	EPFL
Chris Topping	Tetramer
William Stinson	Univ. of Columbia
Daniel Esposito	Univ. of Columbia
Vikash Kumar	EMPA
Alex King	Univ. of Berkeley
Aditya Mohite	Rice
Charles Mismukes	Rutgers
Daiki Nishiori	ASU
Zejie (Justin) Chen	UC Irvine
Austin Fehr	Rice
Hengfei Gu	Rutgers
Nicolas Gaillard	Univ. of Hawaii
Jason Cooper	LBNL

Session ID: PEC-03

Title: Durability in Materials and Devices

Name	Affiliation
Zetian Mi	Univ. Michigan
Olivia Alley	LBNL
Zachary Clifford	Rutgers
Katie Hurst	NREL
James Young	NREL

Consensus and (no major) Dissenting Opinions Summary of Discussion **Differences between Photocatalysis (PC) and** • Overview of field (reactors, theory, exps., etc.) **Photoelectrochemistry (PEC):** What differs between photocatalysis (PC) and electrochemically coupled tandem (shuttle diffusive transport, reaction selectivity, cocatalysts mediate back reactions, separator) photoelectrochemistry (PEC)? • large photoabsorber surface area (large recomb./generation SRVs, Specific considerations for PC (vs. PEC) short charge-carrier collection lengths, thin-layer cocatalysts) protocols at the level of (M)aterials, isolated small particles (mobile photoabsorbers, possibly facile syntheses, isolated degradation points, possibly easy to replace (C)omponents, and (D)evices materials, smaller absorbed photon flux from blackbody and Many inquiries about details of PC reactors, sunlight sources, unique nano-optical properties) considerations, and types of measurements opportunities for new solar H₂ processes and reactor designs Action Items (not discussed during session) Key Take-Aways Session Chair There is a lot of excitement to innovate on new ideas in PC and PFC • Contact attendees to determine who will help with the following: Less is known broadly about the PC field than the PFC field Session Chair's Project Team, et al. Many more interrelated properties in PC than Develop protocols unique to PC in PFC (M1) Redox shuttle characterization Key challenge is to determine how to bridge (C1) Baggie material characterization data from single-particle measurements to reactor-scale observations (D2) Modify/use Type 1 protocols from Feb. 2021 Joule article

- Read existing PEC protocols and identify those to update with PC
- Oversee updating, or generating new, ~10 PEC protocols, with PC

- (D1) STH Standards: stir rate, particle conc., light profile, pH₂/pO₂
- Write and publish detailed PC perspective paper

Name	Affiliation
Shane Ardo	UCI
Zejie Chen	UCI
Chengxiang Xiang	Caltech
Todd Deutsch	NREL
Adam Weber	LBNL
Alex King	LBNL
Aliya S. Lapp(Aslapp)	SNL
Bruce Alan Parkinson	University of Wyoming
Charles Dismukes	Rutgers University
Chris Topping(Ctopping)	Tetramer Technologies, L.L.C.
Daniel Esposito	Columbia University
Earl Wagener	Tetramer
Eric Garfunkel	Rutgers University
Eric Miller	DOE

Name	Affiliation
Hengfei Gu(Hengfei)	Rutgers
Huyen Dinh	NREL
Isaac Holmes-Gentle	EPFL
James Vickers	DOE
Jason Cooper	LBL
James Young (Jyoung3)	NREL
Micha Ben-Naim	Stanford
Michael Wong	Rice
Olivia Alley	LBNL
Robert Stinson	Columbia University
Roel van de Krol	HZB
Rohini Bala Chandran	University of Michigan
Vikash Kumar	EMPA
William Stinson	Columbia University

Name	Affiliation
Zetian Mi	University of Michigan
Zijie Chen	University of Michigan
Adam Nielander	Stanford
Zachary Clifford	Rutgers University

<u>Summary</u>

- Reviewed prev. roadmaps /performance targets PEC components and systems
- Discussion organized based on 4 key PEC elements and 3 PEC technology pathways
- Participants filled out a survey & MURAL board identifying and assessing key bottlenecks, as well as timelines needed to overcome those bottlenecks

Key Take-Aways

- H2 makes sense for PEC and reasonable to create a meaningful roadmap
- Roadmap should account for needed progress in both components & devices (sub-roadmaps helpful too!)
- Today: Type IV > Type III >> Type II, although "entitled technology" not clear

<u>Consensus</u>

- Wide range of progress across different components and pathways
- Pattern of gaps spanning all pathways that need to be systematically assessed
- Lacking expertise in failure analysis protocols for durability assessment
- **Dissenting view**: PV electrolysis is closer to practice; why do integrated PEC at all?

Action Items / Recommendations

- R: Regularly updated pathway-specific roadmaps based on latest technical progress is needed, and should be an intl' effort
- R: 1 m² + demos are essential to both R&D efforts & accurate long range roadmap
- R: Consolidated list of intl. PEC program
- A.I.: Short summary report of survey that captures comments of MURAL board

Name	Affiliation
Dan Esposito	Univ. of Columbia
Todd Deutsch	NREL
Tom Jaramillo	Sandford
Katie Randolph	DOE
James Young	NREL
CX Xiang	Caltech
Adam Nielander	Stanford
James Vickers	DOE
William Stinson	Univ. of Columbia
Shu Hu	Yale
Zhaoning Song	Univ. of Toledo
Zetian Mi	Univ. of Michigan
Huyen Dinh	NREL
Isaac Holmes-Gentle	EPFL

Name	Affiliation
Karl Gross	H2 Technology Consulting
Roel Van De Krol	HZB
Waseer Mohamed	Univ. of Columbia
Shane Ardo	UCI
Frances Houle	LBNL
Charles Dismukes	Rutgers
Earl Wagnerer	Tetramer
Bruce Parkinson	Wyoming
Francesca Toma	LBNL
Krishani Teeluck	Rutgers
Micheal Wong	Rice
Robert Stinson	Univ. of Columbia
Ned Stetson	DOE

Name	Affiliation
Sixuan Hou	Columbia
Zejie Chen	UCI

Session ID: PEC-07 Title: Standard bench- and sub-scale hardware

• Consensus and/or dissenting opinions Summary of discussion Discussed bench- and sub-scale definitions PEC-specific bench- and sub-scales by vote: appropriate for current status of PEC Current bench scale definition: 1-10 cm² Discussed design needs for bench- and sub-scale Current subscale definition: >0.1-1 m² standard hardware Within 5 years, the field should strive to Discussed the continuing development of two achieve demonstrations with STH >10% and hardware examples that may facilitate standard >100-hr durability at 0.1-1 m² scale. Particle testing configurations photocatalyst systems have less stringent 5-Discussed subscale demonstration targets the field should strive to reach within 5 years and the yr targets. critical barriers to meeting these targets • Key Take-Aways Action Items Standardization is helpful for systematic progress, but the field should also explore novel Those in the PEC community are photoreactor concepts encouraged to make their hardware Lack of standard hardware not a hindrance to design files public to facilitate openscaling studies which are necessary regardless source development of hardware Scaling studies with model integrated PV-E needed to understand future challenges Although there are general DOE H₂ production definitions for bench- and sub-scale, PEC-specific definitions at smaller scale may be more useful to classify near-term PEC scaling efforts

Session ID: PEC-07 Title: Standard bench- and sub-scale hardware

Name	Affiliation
James Young	NREL
Todd Deutsch	NREL
CX Xiang	Caltech
James Vickers	DOE
Adam Nielander	Stanford
Daniel Esposito	Columbia
Francesca Toma	LBNL
Genevieve Saur	NREL
Isaac Holmes-Gentle	EPFL
Nicolas Gaillard	HNEI
Roel van de Krol	HZB
Shane Ardo	UC-Irvine
Shu Hu	Yale
Zhaoning Song	Toledo