

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Hydrogen and Fuel Cell Technologies Office: Hydrogen Production Overview

Katie Randolph

Hydrogen and Fuel Cell Technologies Office

3rd Annual HydroGEN Advanced Water Splitting Technology Pathways Benchmarking and Protocols Workshop March 1, 2021

H2@Scale: Enabling affordable, reliable, clean, and secure energy

- Hydrogen can address specific applications across sectors that are hard to decarbonize
- Today: 10MMT H₂ in the U.S.
- Economic Potential: 2 to 4x more

Strategies

- Scale up technologies in key sectors
- Continue R&D to reduce cost and improve performance, reliability
- Address enablers: harmonization of codes, standards, safety, global supply chain, workforce development, sustainable markets

Source: U.S. DOE Hydrogen and Fuel Cell Technologies Office, https://www.energy.gov/eere/fuelcells/h2scale

Global Interest, Drivers and Energy Related Carbon Emissions by Sector

Drivers include:

- Emissions reduction
- Energy security
- Economic growth
- Resiliency
- Energy efficiency
- Innovation potential
- Environmental benefits

Source: IRENA, 2017a from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Sep/IRENA_H drogen_from_renewable_power_2018.pdf

deep emission

reductions

The Hydrogen Technologies Program

From producing hydrogen from feedstocks through delivering it to the end-use application

Enabling sustainable, low cost and efficient H₂ production

	Strategic R&D Priorities	Near-term 2025	Mid-term 2030	Long-term 2040
Hydrogen Production	 Affordable, efficient and durable multi-MW-scale electrolyzers Innovative approaches to H₂ production, beyond electrolysis 			

A Multi-layered Approach to AWS Technology Development

Advanced Manufacturing (TRL 6-7) – R&D on manufacturing processes and techniques suitable for highvolume manufacture of mega-watt scale electrolyzers and electrolyzer components

Advanced Components (TRL 4-5) – R&D on integration of materials into components (e.g., catalysts into MEA) and components into systems (e.g., cells into stacks), developing an understanding of mechanisms and addressing performance barriers for PEM LTE and O²⁻ conducting HTE

Advanced Materials (TRL 1-3) – Foundational R&D

on materials with improved performance and durability for water splitting technologies, including low and hightemperature electrolysis and direct thermochemical and photoelectrochemical technologies. Industry-led R&D projects competitively selected through Funding Opportunity Announcements, coordinated with H2NEW

H2NEW National Laboratory-led research consortium on advance component development for low and high-temperature electrolysis

HydroGEN National Laboratory-led
 research consortium on advance
 materials development for water
 splitting technologies

Approach flows from *foundational materials-development* across multiple technologies to *advanced integrated component development* to *advanced system manufacturing processes*

HydroGEN Advanced Water Splitting (AWS) Materials Consortium

FOA

Non-Profit

Theory & Computation

Accelerating AWS Materials R&D to Enable < 2/kg H₂

- Leveraging & streamlining access to world-class capabilities & expertise
- Providing a robust, secure, searchable, & sharable Data Hub
- Developing universal standards & best practices for benchmarking & reporting
- Fostering cross-cutting innovation

HydroGEN 2.0 Focus Areas

LTE: Enable high efficiency, durable AEMWE without supporting electrolytes

HTE: Identify electronic leakage mechanisms in p-SOEC for higher cell performance at lower temperatures

STCH: Develop global understanding of material structure & composition required to achieve high yield performance

PEC : Scale-up & improved durability through corrosion mitigation & ~neutral pH operation

NREL SNL High-throughput spray for electrode fabrication Bulk & interfacial LAMMPS classic Conformal ultrathin TiO₂ ALD coating on bulk nanoporous Au models of aqueous molecular dynamics electrolvtes modelína **Characterization & Analytics** LBNL Atomic force reactor microscopy: inextractina situ & operando auantitative kinetic data characterizatio Core Team: National Labs

11 National Labs10 Companies39 Universities2 Funding Agencies

Materials Synthesis

Innovative Consortia Model Connecting AWS Community and Enhancing R&D

- 5 Core Labs with >80 capabilities & expertise in electrolysis, PEC, & STCH
- Supporting 32 projects awarded through FOAs
- Aiding development of > 35 AWS test protocols
- Addressing R&D gaps through collaborative Lab-led research efforts

Key Technical Accomplishments

- Achieved 70% PEM electrolyzer cell efficiency while improving durability & reducing cost
- Scaled up baseline cell by 8X w/ 9% STH efficiency & 100 h stability integrated pv-PEC system
- Discovered new STCH compounds with H₂ production capacities > SOA at lower temperatures
- Demonstrated a metal-supported o-SOEC cell with dramatically improved stability

H2NEW Consortium: <u>H2</u> from the <u>Next-generation of Electrolyzers of Water</u>

A comprehensive, concerted effort focused on overcoming technical barriers to enable affordable, reliable & efficient electrolyzers to achieve < $2/kg H_2$

- Launching in Q1 FY21
- Both low- and high-temperature electrolyzers
- \$50M over 5 years

The focus is not new materials but addressing components, materials integration, and manufacturing R&D

Utilize combination of world-class experimental, a nalytical, and modeling tools

Clear, well-defined stack metrics to guide efforts.

Draft Electrolyzer Stack Goals by 2025

	LTE PEM	HTE
Capital Cost	\$100/kW	\$100/kW
Elect. Efficiency (LHV)	70% at 3 A/cm ²	98% at 1.5 A/cm ²
Lifetime	80,000 hr	60,000 hr

Durability/lifetime is most critical, initial, primary focus of H2NEW

- Limited fundamental knowledge of degradation mechanisms.
- Lack of understanding on how to effectively accelerate degradation processes.
- Develop and validate methods and tests to accelerate identified degradation processes to be able to evaluate durability in a matter of weeks or months instead of years.
- National labs are ideal for this critical work due to existing capabilities and expertise combined with the ability to freely share research findings.

Enabling MW-Scale Manufacturing of Electrolyzers Critical to H₂@Scale

Advanced components, sub-systems, & systems for multi-MW-scale electrolyzers

Advanced Components

GW-Scale Manufacturing

Electrode

Electrolyzers

MW-Scalable

Courtesy of Plug Power Inc.

Manufacturing solutions for low cost, efficient, durable & reliable multi-MW scale deployments¹

H2NEW

<u>H2</u> from the <u>Next-generation of Electrolyzers of Water</u>

5 year, \$10M/yr Multi-Lab Consortium

Objective: Overcome technical barriers & enable affordable, reliable & efficient low and high temperature electrolyzers at <\$100/kW

FOAs

Addressing components, materials integration, & manufacturing R&D

LTE (\$14M Effort - 3 New Projects)	HTE (\$10M Open FOA Topic)
 Plug Power: Single-piece multi- functional integrated membrane anode assembly 3M: Advanced manufacturing technology enabling fabrication of SOA catalysts & electrodes 	 Decrease part count, reduce processing steps, standardize processes & components Develop real-time quality control metrology techniques Manufacturing techniques targeting past of \$200 (kW)
 • Proton Energy: Develop & Optimize manufacturable PTL at >1000 cm ²	targeting cost of \$300/KW

¹: Park J., Kang Z., Bender G., Ulsh M., Mauger S.A. "Roll-to-roll Production of Catalyst Coated Membranes for Low-temperature Electrolyzers." *Journal of Power Sources*, 479, 2020.

Benchmarking and Protocol Development for AWS Technologies

PI: Kathy Ayers, Proton OnSite (LTE) Co-PIs: Ellen B. Stechel, ASU (STCH); Olga Marina, PNNL (HTE); CX Xiang, Caltech (PEC) Consultant: Karl Gross

Goal: Development of best practices in materials characterization & benchmarking critical to accelerate materials discovery & development

Accomplishments:

- 2nd Annual AWS community-wide benchmarking workshop (ASU, Oct. 29–30, 2019)
- 36 test protocols drafted and reviewed
- 40 additional protocols in drafting process
- Relevant operational conditions were assessed for each of the water splitting technologies
- Engaged with new projects at March 2020 kickoff meeting and organized breakout meetings
- Quarterly newsletters disseminated to AWS community

Development of best practices in materials characterization and benchmarking: critical to accelerate materials discovery and development

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Resources and Events

Save the Date

June 8th week, 2021 Annual Merit Review and Peer Evaluation Meeting for the DOE Hydrogen and Fuel Cells Program

Resources

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Thank You!

www. hydrogen.energy.gov