

Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop

Breakout Session Summaries Solar Thermochemical Hydrogen (STCH)

March 2 – 4, 2021

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Summary of discussion

• Two particle size ranges rather than one is preferable. A summary and updates since 2019 was Ddurability testing dependent on durability protocol but need to account for burn in -- Effect of cycle number will also be borne out in statistical presented analysis Chemical and thermal reduction methods are fine to assess oxidation Discussion centered around finalizing kinetics experimental specifics of the protocol such as Divide characterization prior to kinetic testing into two categories, necessary and recommended. E.g., XRD, an estimate of surface area operating temperature, particle size, gas (whether BET, image based, etc.) and bulk composition necessary, whereas BET, SEM, PSD recommended concentration and reactant gas species pO_2 controlled via O_2 mixes or H_2/H_2O ratios - consensus Pure steam should be used during oxidation rather than H₂O/H₂ mixture – There was good agreement and consensus consensus among the attendees and clear action items At least three temperatures with 50-100 K spacing – consensus going forward Model based approaches to compliment experiments using method of McDaniel - consensus Key Take-Aways **Action Items** Identifying perhaps two particle size Finalize protocol draft distributions, e.g., small (1-10 µm and 10-1. J. Scheffe – Experimental Procedure 100 μ m) and large, may be important to help separate materials that may look 2. A. McDaniel – Model Based Analysis good in one range and poor in another, Finalize appropriate PSD's and initial like ferrites characterization methods Durability testing will be outsourced to the Durability Protocol

Session ID: 2021 STCH-1 (Jonathan Scheffe Session Lead)

Consensus and/or dissenting opinions

Title: STCH Kinetics (Protocol)

Session ID: <u>STCH-1</u> Title: <u>STCH Kinetics (Protocol)</u>

3

Name	Affiliation
Andrea Ambrosini	Sandia National Laboratories (SNL)
Anthony McDaniel	Sandia National Laboratories (SNL)
Anyka Bergeson-Keller	Colorado School of Mines
Brendan Bulfin	EPFL, Switzerland
Charles Musgrave	University of Colorado Boulder (UC Boulder)
Chris Muhich	Arizona State University
Dylan McCord	University of Florida
Ellen B. Stechel	Arizona State University
Eric Coker	Sandia National Laboratories (SNL)
Hector De Santiago	Savanah River National Laboratory (SRNL)
Ivan Ermanoski	Arizona State University
James Miller	Arizona State University
James Park	Sandia National Laboratories (SNL)
Jian Luo	University of California San Diego (UCSD)
Jiyun Park	Brown University
Johannes Grobbel	German Aerospace Center (DLR)
Jonathan Scheffe	University of Florida
Justin Tran	University of Colorado Boulder (UC Boulder)
Kangjae Lee	German Aerospace Center (DLR)
droGEN: Advanced Water Splitting Materials	

Session ID: <u>STCH-1</u> Title: <u>STCH Kinetics (Protocol)</u>

Name	Affiliation
Kent Warren	University of Colorado Boulder (UC Boulder)
Kim Cierpik-Gold	DOE Contractor (BGS)
Levi Irwin	DOE Contractor
Michael Sanders	Colorado School of Mines
Ryan O'Hayre	Colorado School of Mines
Sai Gautam Gopalakrishnan	Indian Institute of Science
Shang Zhai	Stanford University
Stefan Brendelberger	German Aerospace Center (DLR)
Steven Wilson	Arizona State University
Tadashi Ogitsu	Lawrence Livermore National Laboratory (LLNL)
Waseer Mohamed	Columbia University
Wei Li	West Virginia University
Zach Bare	University of Colorado Boulder (UC Boulder)
Zhiwen Ma	National Renewable Energy Laboratory (NREL)

Summary of discussion

Discussed the need for a roadmap, debated on specific topical R&D areas such as materials, reactors, and subsystems, but stopped short of formulating a plan for action

Discussion vacillated between setting endpoint performance targets for materials, reactors, and subsystems and then working backwards to look for "choke points" versus select a material, put it into a reactor, run it and work forwards by finding solutions to technology barriers as they become more evident in real operating conditions

Key Take-Aways

- If this community does not develop a R&D roadmap, then somebody else will do it for us and we may not agree with that outcome
- It would be wise to learn and take lessons from other industries such as PV or automotive. The state of STCH was likened to 1950's PV (inefficient and expensive)
- Now is the time to select a material and develop a reactor around it. Uncertainty expressed about scale of this reactor due to cost and manageability (e.g., difficult to source 100kgs of materials, too much for labs to make, too small for industry to get interested)

Session ID: 2021 STCH-2 (Anthony McDaniel Session Lead) Title: STCH Technology Roadmap Discussion

Consensus and/or dissenting opinions

- Recognized that development of materials and reactors will likely continue along independent paths, which makes it difficult to evaluate progress.
- There is a need for a "universal" testing system for materials in real world operating conditions.
- Need an action plan for creating an community driven roadmap.

Action Items

 Survey members of the community on whether there is interest in <u>volunteering</u> time to preparing a roadmap

Session ID: <u>STCH-2</u> Title: <u>STCH ROADMAP</u>

6

Name	Affiliation
Andrea Ambrosini	Sandia National Laboratories (SNL)
Anthony McDaniel	Sandia National Laboratories (SNL)
Anyka Bergeson-Keller	Colorado School of Mines
Charles Musgrave	University of Colorado Boulder (UC Boulder)
Chris Muhich	Arizona State University
Dawei Zhang	University of California San Diego (UCSD)
Dylan McCord	University of Florida
Ellen B. Stechel	Arizona State University
Eric Coker	Sandia National Laboratories (SNL)
Hector De Santiago	Savanah River National Laboratory
Huyen Dinh	National Renewable Energy Laboratory
Ivan Ermanoski	Arizona State University
James Miller	Arizona State University
James Park	Sandia National Laboratories (SNL)
Jian Luo	University of California San Diego (UCSD)
Johannes Grobbel	German Aerospace Center (DLR)
Jonathan Scheffe	University of Florida
Justin Tran	University of Colorado Boulder (UC Boulder)
Kangjae Lee	German Aerospace Center (DLR)
/droGEN: Advanced Water Splitting Materials	

Session ID: <u>STCH-2</u> Title: <u>STCH ROADMAP</u>

Name	Affiliation
Karl J Gross	H2 Technology Consulting
Katie Randolph	Department of Energy
Kent Warren	University of Colorado Boulder (UC Boulder)
Kim-Cierpik Gold	DOE Contractor (BGS)
Levi Irwin	DOE Contractor
Michael Sanders	Colorado School of Mines
Sai Gautam Gopalakrishnan	Indian Institute of Science (IISc)
Sarah Shulda	National Renewable Energy Laboratory
Shang Zhai	Stanford University
Stefan Brendelberger	German Aerospace Center (DLR)
Steven Wilson	Arizona State University
Tadashi Ogitsu	Lawrence Livermore National Laboratory
Zach Bare	University of Colorado Boulder (UC Boulder)
Zhiwen Ma	National Renewable Energy Laboratory

Summary of discussion

- Details in the developing protocol were discussed in terms of suggested experimental parameters and methods
- Implementation of protocol
- Reference standard candidates were discussed
- Requirements for reporting data
- Time spent on low pO₂ issues

Key Take-Aways

- Reaching very low pO₂ (< 1 ppm) is difficult for many labs
- Protocol for achieving low pO₂ by most labs should be identified and explained in detail
- Systems should be qualified by running standards
- Perovskite standard should be identified and exercised in addition to the existing CeO₂ standard
- Reaching reduction equilibrium at low pO₂ and T is time consuming

Session ID: 2021 STCH-3 (Andrea Ambrosini Session Lead) Title: STCH Thermodynamics (Protocol)

ol were experimental vere discussed	 Consensus and/or dissenting opinions Participating labs must show that their TGA is well calibrated by showing that their data taken on a reference material matches each other within acceptable error bars (SNL, CSM, UF) Water splitting capability should be considered when determining reference standards Results should show reproducibility w/ error bars CEF may be a possible substitute for very low pO₂ measurements (have to first show capability to extrapolate)
is difficult for most labs should tail unning standards entified and ng CeO ₂ standard t low pO_2 and T is	 Action Items Edit and refine current draft of the protocol Round robin of CeO₂ to ensure different labs are consistent using the protocol Determination of perovskite standard Identify additional characterization techniques, particularly for low pO₂, e.g., stagnation flow reactor

Session ID: <u>STCH-3</u> Title: <u>STCH THERMODYNAMICS (PROTOCOL)</u>

Name	Affiliation
Al Weimer	University of Colorado Boulder
Andrea Ambrosini	Sandia National Laboratories
Anthony McDaniel	Sandia National Laboratories
Anyka Bergeson-Keller	Colorado School of Mines
Bob Bell	National Renewable Energy Laboratory
Charles Musgrave	University of Colorado Boulder
Dylan McCord	University of Florida
Elizabeth Gager	University of Florida
Ellen B. Stechel	Arizona State University
Eric Coker	Sandia National Laboratories
Hector De Santiago	Savanah River National Laboratory
Ivan Ermanoski	Arizona State University
James Miller	Arizona State University
James Park	Sandia National Laboratories
Jian Luo	University of California, San Diego
Johannes Grobbel	German Aerospace Center (DLR)
Jonathan Scheffe	University of Florida
Justin Tran	University of Colorado Boulder (UC Boulder)
Kangjae Lee	German Aerospace Center (DLR)
droGEN: Advanced Water Splitting Materials	

Session ID: <u>STCH-3</u> Title: <u>STCH THERMODYNAMICS (PROTOCOL)</u>

Name	Affiliation
Kim Cierpik-Gold	DOE Contractor (BGS)
Levi Irwin	DOE Contractor
Michael Sanders	Colorado School of Mines
Shang Zhai	Stanford University
Steven Wilson	Arizona State University
Zhiwen Ma	National Renewable Energy Laboratory

Summary of discussion

- Recapped last year's discussion and picked up with remaining items
- Largely achieved consensus on early and advanced durability testing, with *in-situ* testing yet to be addressed in detail

Session ID: 2021 STCH-4 (Ivan Ermanoski Session Lead) Title: Durability

scussion and picked ns ensus on early and sting, with <i>in-situ</i> ssed in detail	 Consensus and/or dissenting opinions Following level 1 and 2, the additional <i>ex-situ</i> tests that make sense are: Material compatibility. This might even creep into levels 1&2, in case there are any concerns regarding putting materials into instruments More cycles: Maybe ~1-2k, otherwise similar to level 2 Diminishing returns in more ex-situ tests Need to design/build and then exercise materials in reactors Testing protocols should be as approachable and accessible as possible
ability tests start to to pass Levels 1 and 2 ext best step is likely actors – potentially u compatibility and	Action Items Publish Level 1 and Level 2 Durability Protocols after review by several in the community

Key Take-Aways

- At some point *ex-situ* durability tests start to diminish returns.
- With few materials likely to pass Levels 1 and 2 of durability testing, the next best step is likely to exercise materials in reactors – potentially after a couple more *ex-situ* compatibility and cycling tests
- What do test reactors and equipment look like?
 They need to be as accessible as possible. This is an area where more understanding is needed

Session ID: <u>STCH-4</u> Title: <u>STCH DURABILITY (PROTOCOL)</u>

Name	Affiliation
Al Weimer	University of Colorado Boulder
Andrea Ambrosini	Sandia National Laboratories
Anthony McDaniel	Sandia National Laboratories
Anyka Bergeson-Keller	Colorado School of Mines
Dawei Zhang	University of California, San Diego (UCSD)
Dylan McCord	University of Florida
Ellen B. Stechel	Arizona State University
Eric Coker	Sandia National Laboratories
Hector De Santiago	Savanah River National Laboratory
Ivan Ermanoski	Arizona State University
James Miller	Arizona State University
James Park	Sandia National Laboratories
Jian Luo	University of California, San Diego
Jonathan Scheffe	University of Florida
Justin Tran	University of Colorado Boulder (UC Boulder)
Kangjae Lee	German Aerospace Center (DLR)
Levi Irwin	DOE Contractor
Kim Cierpik-Gold	DOE Contractor (BGS)
Michael Sanders	Colorado School of Mines
droGEN: Advanced Water Splitting Materials	

Session ID: <u>STCH-4</u> Title: <u>STCH DURABILITY (PROTOCOL)</u>

Name	Affiliation
Shang Zhai	Stanford University
Stefan Brendelberger	German Aerospace Center (DLR)
Steven Wilson	Arizona State University
Tadashi Ogitsu	Lawrence Livermore National Laboratory
Zach Bare	University of Colorado Boulder
Zhiwen Ma	National Renewable Energy Laboratory

Summary of discussion

A protocol is unlikely to achieve the aims of the project as agreed in 2019 A paper or report of "Best Practices" valuable including pitfalls, and structural/magnetic ordering effects, and functional & lab-to-lab results discussed comparisons will be completed **Action Items** Key Take-Aways A group was formed to start Establish list of those interested addressing the best-practices and willing to co-author the best practices paper paper That group will determine what Begin meeting about best will be included and how to practices manuscript and roundstructure the paper robin calculations

Session ID: 2021 STCH-5 (Chris Muhich Session Lead) **Title: Density Functional Theory**

<u>Consensus and/or dissenting opinions</u>

- All agreed that a protocol is not feasible but best practices would be
- A minimum list of areas that a best practices paper should include were

Session ID: <u>STCH-5</u> Title: <u>STCH DENSITY FUNCTIONAL THEORY</u>

Name	Affiliation
Andrea Ambrosini	Sandia National Laboratories
Charles Musgrave	University of Colorado Boulder
Chris Muhich	Arizona State University
Elizabeth Gager	University of Florida
Ellen B. Stechel	Arizona State University
Eric Coker	Sandia National Laboratories
Ivan Ermanoski	Arizona State University
James Park	Sandia National Laboratories
Jiyun Park	Brown University
Johannes Grobbel	German Aerospace Center (DLR)
Jonathan Scheffe	University of Florida
Kangjae Lee	German Aerospace Center (DLR)
Kim Cierpik-Gold	DOE Contractor (BGS)
Levi Irwin	DOE Contractor
Michael Sanders	Colorado School of Mines
Robert Wexler	Princeton University
Sai Gautam Gopalakrishnan	Indian Institute of Science
Shang Zhai	Stanford University
Simon Phillpot	University of Florida
droGEN: Advanced Water Splitting Materials	

Session ID: <u>STCH-5</u> Title: <u>STCH DENSITY FUNCTIONAL THEORY</u>

Name	Affiliation
Stefan Brendelberger	German Aerospace Center (DLR)
Stephan Lany	National Renewable Energy Laboratory
Steven Wilson	Arizona State University
Tadashi Ogitsu	Lawrence Livermore National Laboratory
Zach Bare	University of Colorado Boulder
Zachary Clifford	Rutgers University

Summary of discussion

- Discussed three major points
 - 1) review and approval of prior metrics
 - 2) the need for a Rigone-type plot to compare redox materials

3) best practices for calculating process efficiency

- Discussion on equitable comparison of material performance; more materials are being discovered and reported in literature, hence the need
- Discussion about best practices for predicting solarto-hydrogen conversion efficiency (aka process efficiency)

<u>Key Take-Aways</u>

- Given the resources it takes to critically assess material performance via measurement and modeling, a tiered approach should be taken
- Materials must first pass fast and simple screening tests before investing more resources to determine viability
- Standardizing protocols and performance metrics is possible to some extent, but it is premature to prescribe global parameters and operating boundaries. In other words, metrics and operating boundaries remains a material-specific issue

Session ID: 2021 STCH-7 (Anthony McDaniel Session Lead) Title: Metrics -Units and Operating Boundaries (Protocol)

Consensus and/or dissenting opinions

- H₂ productivity should be normalized as "mole H₂ /mole atoms" (including active and inactive phases)
- 1-sun H_2 production rate (kg H_2 /s m^2) is useful; area on the mirrors; not the only important metric
- No agreement on standardizing cycle conditions for comparison purposes; thermo is not enough because it lacks "cycle time" information – likely optimized for material with some boundary conditions.
- Process efficiency needs a detailed model; computational tools, methods, and assumptions all matter; possible to standardize some assumptions

Action Items

- Finish metrics definition draft and distribute to members of the community for publication in Frontiers in Energy Research – Benchmarking and Protocols Research Topic
- These will be recommendations including rational, not requirements

Session ID: <u>STCH-7</u> Title: <u>STCH METRICS: UNITS AND OPERATING CONDITIONS</u>

Name	Affiliation		
Andrea Ambrosini	Sandia National Laboratories		
Anthony McDaniel	Sandia National Laboratories		
Chris Muhich	Arizona State University		
Ellen B. Stechel	Arizona State University		
Eric Coker	Sandia National Laboratories		
Hector De Santiago	Savanah River National Laboratory		
Ivan Ermanoski	Arizona State University		
James Miller	Arizona State University		
James Park	Sandia National Laboratories		
Johannes Grobbel	German Aerospace Center (DLR)		
Jonathan Scheffe	University of Florida		
Kangjae Lee	German Aerospace Center (DLR)		
Kent Warren	University of Colorado Boulder		
Kim Cierpik-Gold	DOE Contractor (BGS)		
Michael Sanders	Colorado School of Mines		
Rohini Bala Chandran	University of Michigan		
Shang Zhai	Stanford University		
Stefan Brendelberger	German Aerospace Center (DLR)		
Steven Wilson	Arizona State University		
droGEN: Advanced Water Splitting Materials			

Session ID: <u>STCH-7</u> Title: <u>STCH METRICS: UNITS AND OPERATING CONDITIONS</u>

Name	Affiliation		
Tadashi Ogitsu	Lawrence Livermore National Laboratory		
Zach Bare	University of Colorado Boulder		
Zachary Clifford	Rutgers University		
Zhiwen Ma	National Renewable Energy Laboratory		

Summary of discussion

- Systems Modeling and STCH materials are interconnected. Defining STCH materials help define system configuration and components, which are analysis bases of techno-economics analysis (TEA)
- STCH materials are the foundation of STCH system and maintain ongoing researches in the field that currently cross HFTO, SETO, and international programs. Hybrid thermochemical/ electrochemical processes may be explored for its benefits and potentials.
- Developing STCH approaches/ consensus on system design will be key to system modeling and TEA.

Key Take-Aways

STCH material development may lead the system modeling and methodology currently needed by the STCH community.

Establishing connections between STCH material development and system integration can facilitate a promising STCH path.

The need of communication across material development and system integration is necessary to inform industry of the technology status and evaluation tools.

Session ID: 2021 STCH-8 (Zhiwen Ma Session Lead) Title: STCH Systems Modeling and Techno-economics)

Consensus and/or dissenting opinions

Community connection helps develop, regularly update, and coordinate working progresses to be effective. Material data to be standardized are recommended to embody into community-accepted database via internet access and analysis program. Systems modeling may consider process software in addition to technoeconomics (such as H2A tool). It would also be useful if system modeling and Technoeconomics software could generate component design and performance to enable crosstechnology applications.

Action Items

- Interface with activities initiated under SolarPACES Task II and the international community for roadmap, code (including software modeling package), and standard development
- Should consider industry involvement to promote a commercialization path. With solar fuel startups Heliogen, Synhelion), industry should be audiences of the STCH outcomes
- Volunteers from the session will reach out to others in the community to gauge interest in forming a system modeling and Technoeconomics U.S. working group

Session ID: <u>STCH-7</u> Title: <u>STCH SYSTEMS AND TECHNOECONOMICS</u>

Name	Affiliation		
Andrea Ambrosini	Sandia National Laboratories		
Anthony McDaniel	Sandia National Laboratories		
ob Bell National Renewable Energy Laboratory			
Ellen B. Stechel	Arizona State University		
Hector De Santiago	Savanah River National Laboratory		
Ivan Ermanoski	Arizona State University		
James Miller	Arizona State University		
James Park	Sandia National Laboratories		
James Vickers Department of Energy			
Johannes Grobbel German Aerospace Center (DLR)			
Jonathan Scheffe	University of Florida		
Kangjae Lee	German Aerospace Center (DLR)		
Katie Randolph	Department of Energy		
Kim Cierpik-Gold	DOE Contractor (BGS)		
Michael Sanders	Colorado School of Mines		
Ned Stetson	Department of Energy		
Ryan O'Hayre	Colorado School of Mines		
Shang Zhai	Stanford University		
Stefan Brendelberger	German Aerospace Center (DLR)		
ydroGEN: Advanced Water Splitting Materials			

Session ID: <u>STCH-8</u> Title: <u>STCH SYSTEMS AND TECHNOECONOMICS</u>

Name	Affiliation		
Steven Wilson	Arizona State University		
Tadashi Ogitsu	Lawrence Livermore National Laboratory		
Wei Li	West Virginia University		
Zach Bare	University of Colorado Boulder		
Zhiwen Ma	National Renewable Energy Laboratory		

Summary of discussion

- Materials focused sessions mostly focused on fine tuning protocols
- TEA and Roadmap what is the appropriate level of detail? There is linkages and interdependence here
- Metrics retired several discussions, will continue with HydroGen 2.0

Key Take-Aways

- Community has developed a lot of consensus
- A key challenge for further consensus lies in the chicken and egg issue of the materials vs. reactors
- We have to lead by example in our own work and reporting
- We can achieve additional progress through HydroGEN 2.0 and leverage, e.g., with SolarPACES, industry, foreign partnerships ...

Session ID: 2021 STCH-9 (Jim Miller Session Lead) Title: STCH Wrap-up

Consensus and/or dissenting opinions

- Normalization/universal standards, error bars, reproducibility & replication, sensitivity analysis
 Don't eliminate something prematurely
 - Materials, reactors, or both?
 - Work from end point back to define constraints/what is reasonable and identify main sensitivities?

Action Items

- Finalize/publish protocols or best practices for kinetics, durability, DFT, thermo
- Data sharing methods, .e.g., in DFT
- Round robin calculations (DFT) and tests (thermodynamics TGA)
- Define targets and metrics (Roadmap, TEA)

Session ID: <u>STCH-9</u> Title: <u>STCH WRAP UP</u>

Name	Affiliation		
Andrea Ambrosini	Sandia National Laboratories		
Anthony McDaniel	Sandia National Laboratories	Sandia National Laboratories	
Charles Musgrave	University of Colorado Boulder		
Chris Muhich	Arizona State University		
Ellen B. Stechel	Arizona State University		
Eric Coker	Sandia National Laboratories		
Hector De Santiago	Savanah River National Laboratory		
Ivan Ermanoski	Arizona State University		
James Miller	Arizona State University		
James Park	Sandia National Laboratories		
Jian Luo	University of California, San Diego		
Jonathan Scheffe	University of Florida		
Kent Warren	University of Colorado Boulder		
Kim Cierpik-Gold	DOE Contractor (BGS)		
Levi Irwin	DOE Contractor		
Shang Zhai	Stanford University		
Steven Wilson	Arizona State University		
Zach Bare	University of Colorado Boulder		
Zhiwen Ma	National Renewable Energy Laboratory		
ydroGEN: Advanced Water Splitting Materials		2	

Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop

Brief Overview of the Solar Thermochemical Pathway Breakouts for Closing Plenary

March 8, 2021

Ellen B. Stechel, presenting

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Two-step Redox-Active Metal Oxide Water Splitting Cycle

STCH: Solar Thermo-Chemical Hydrogen

⊢₂)

STCH Conducted Eight Breakout Sessions

- Four on materials properties: (1) Thermodynamics, (2) Kinetics,
 (3) Durability, and (4) Computation (Density Functional Theory)
- Three higher level: (1) Elements of a Roadmap, (2) Systems Modeling/Technoeconomics, and (3) Metrics/Operating Conditions

• The eighth was a wrap up session

STCH-1	Tues	STCH Kinetics (33)	Jonathan Scheffe
STCH-2	Tues	STCH Technology Roadmap (33)	Tony McDaniel
STCH-3	Tues	STCH Thermodynamics (20)	Andrea Ambrosini
STCH-4	Tues	STCH Durability (22)	Ivan Ermanoski
STCH-5	Wed	STCH Density Functional Theory (26)	Chris Muhich
STCH-7	Wed	STCH Metrics and Operating Conditions (22)	Tony McDaniel
STCH-8	Wed	STCH Systems Modeling and Techno-economics (22)	Zhiwen Ma
STCH-9	Thurs	STCH Wrap-up Session (22)	Jim Miller

Session Leads

- Andrea Ambrosini (STCH-4)
- Robert Bell (STCH-8)
- Ivan Ermanoski (STCH-8)
- James Park (STCH-3, STCH-9)
- Jonathan Scheffe (STCH-2)
- Kent Warren (STCH-1)
- Steve Wilson (STCH-3, STCH-5, STCH-7)

- Significant consensus in the community down to many details
 - Much more than at the first workshop and the second workshop
 - Especially regarding establishing metrics, thermodynamics, kinetics, and durability protocols, and sharing best practices in density functional calculations
- Need to predicate our testing protocols in terms of screening levels 1, 2, and 3
 - If they fail at Level 1, they get tossed, ditto at Level 2
 - STCH has used a Materials Genome like approach to identify candidates by predicting from computation (Level 0 – helpful but not the only route to candidates)
 - Unfortunately, there are limitations to such predictions as they often fail at or before Level 1 (cannot be synthesized, melt at too low a temperature, do not cycle)
 - But still it is a highly valuable approach as it limits the number of experiments given the overall candidate pool is too large for a purely empirical approach
- The field faces "unique" challenges as there is no reactor test platform in the U.S. that can exercise materials in realistic operating conditions (Level 3)

- Unclear to the community on value, need, or resources available to refine a roadmap
 - Who would be the audience
 - Are multiple roadmaps needed depending on the audience
 - What would be the goals
- If this community does not develop a R&D roadmap, then somebody else will do it for us and we may not agree with that outcome
- Discussion on working backwards from target metrics and bounding metrics for components
- Lots of discussion on "chicken and egg" problem on materials vs. reactors
- Need all the key system components before can develop a credible technoeconomic assessment – so inter-relationship

HydroGEN: Advanced Water Splitting Materials

Thermodynamics

- Want to first show that the material will split water
- For thermodynamics the "workhorse" characterization is thermogravimetric at a number of relevant temperatures and partial pressures of oxygen
 - These are time-consuming and require a simpler Level 1 measurement of capacity, measured as moles H₂ per mole atom of the working material (different than lit)
- Discussion focused on the Protocol for determining thermodynamic relationship between the off-stoichiometry δ , temperature (T), and partial pressure of O₂ (pO₂)
 - Lot of discussion on how to achieve very low pO2 levels and potential issues
- Agreed to show reproducibility between labs with a round robin using CeO2 as the reference (three labs)
- Agreed need to identify a reproducible perovskite reference that splits water (does not have to be state of the art)
 - Haven't found a ternary perovskite that passes Level 1 screening including splitting water - may have to agree to use a quaternary

HydroGEN: Advanced Water Splitting Materials

- The kinetics discussion focused on the Protocol for using a laboratory flow reactor to assess water oxidation kinetics for materials' candidates
 - Agreed that powders 10-100 μm to start; however, larger pellets are also necessary as we know that ferrites will work when kept small but not at more practical sizes
 - Need to determine regime for which kinetics is independent of particle size
- Kinetics only follows if material passes Level 1 durability and stability screening
- Can thermally or chemically reduce (latter may be easier in some labs)
- Need at least three different temperature measurements but not prescribing which temperatures
- The kinetics model should be determined empirically rather than mechanistically

- General agreement reached with Level 1 and Level 2 durability criteria protocol
 - At least Level 1 necessary before doing extensive thermodynamics or kinetics measurements
- Unclear but likely a reactor test stand or new specialized instruments will be necessary for Level 3 (to test in realistic operating conditions)
- Discussed the importance of testing for material's compatibility in addition to durability
 - Might even creep into Levels 1 and 2, in case there are concerns regarding putting materials into laboratory instruments

- The discussion centered on preparing a publication of best practices for calculating materials general properties and oxygen vacancy formation energy
 - Will include some non-experts and experimentalist
- Also discussed the range of challenges and considerations such as
 - Magnetics, spin ordering, effective mass, spin-orbit coupling, alloying, phase changes, local structure around defects.
- Candidate searching should be done broadly over large chemical space
- Planned for doing a round robin calculation on a material with the different approaches, will be included in the publication.
- CeO₂ can be difficult due to contribution of f electrons, but must be included as it is the "state-of-the-art" and best studied

Thank you for your attention and to all the session leads, note takers, and participants, in these highly productive discussions