

Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop

Breakout Session Summaries High Temperature Electrolysis (HTE)

October 29 - 30, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

The HTE breakout session discussed cell components, testing approaches and the need to move towards device testing in order to better understand materials performance and degradation under realistic operating conditions and realistic steam utilizations. There was strong agreement that scaling cell size up should become a priority. For solid oxide electrolyzers, performance maps and TEA mapping and operating boundaries were discussed, and a strategy for choosing operating parameters was suggested. The consensus was that proton conductors are at a very early stage with many unknowns; for proton conducting cells the faradaic efficiency must always be measured and reported. For protocol development, the focus would remain both on materials characterization and button and large cell testing. In addition, protocols on durability testing, cycling testing, thermal and mechanical stress testing are urgently needed. Accelerated stress testing was agreed to be important, but would require a high throughput testing system and a good understanding of each degradation mechanism.

Breakout Session #	Session ID	Technology	Торіс	Lead
1	H1-A	HTE	HTE Technology Roadmap Review & Discussion - Materials, Components	Olga Marina
1	H1-B	HTE	HTE Technology Roadmap Review & Discussion - Devices, Testing	Mark Williams
2	H2-A	HTE	Best Methods and Practices for Characterizing SOEC Materials	Joseph Barton
2	H2-B	HTE	Best Methods and Practices for Characterizing H ⁺ -SOEC Materials	Dong Ding
4	H4-A	HTE	Cell Performance Measurements: Standards, Calibrations, Protocols, Validation	Jim O'Brien
4	H4-B	HTE	SOEC and H ⁺ -SOEC Operating Conditions and Boundaries	Joseph Hartvigsen
5	H5-A	HTE	Materials and Device Lifetime Testing Protocols	Xingbo Liu
5	H5-B	HTE	Terminology and Units	Neal Sullivan
6	H6-A	HTE	Wrap-up/Action Item Assignment: HTE Materials, Components	Ani Kulkarni
6	H6-B	HTE	Wrap-up/Action Item Assignment: HTE Cells, Stacks	Jamie Holladay

 Summary of discussion Economic viability Impact of stack life What cell design is better Where are main degradation Materials: O2-conductors - need to understand materials performance better and what is the main degradation; H+ conductors - very early stage with many unknowns and no standard available. Cells: need realistic values of steam utilization and operating conditions; need standards for large single cell test Benefit of high pressure (up to 10bar) 	 Consensus: Testing large cells would allow meaningful comparisons between cell test results from different groups Need to identify sets of operating conditions for standardized testing Scale up to actual stack conditions is highly needed
 <u>Key Take-Aways</u> Need to scale up testing from button cells to larger cells to operate at realistic conditions and realistic values of steam utilizations Need standards for large single cell test Pressurized conditions should be tested (up to 10 bar) because of system advantages, but challenges arise 	 Action Items Review and revise existing protocols – assignments made Identify a manufacturer of standard cells Assess where to get standards for single cell testing including contacting, sealing, etc.

Session ID: H1-A Title: HTE Roadmap: Materials, Components

Name	Affiliation
Ani Kulkarni	CSIRO
Olga Marina	PNNL
Scott Barnett	Northwestern
Dong Ding	INL
Xingbo Liu	WVU
Neal Sullivan	CSM
Gary Groenewold	INL
Hanping Ding	INL
James O'Brien	INL
David Ginley	NREL

 <u>Key Take-Aways</u> Need to define scale up for both cell size and manufacturing Thermal management for stacks is a gap Steps being taken to improve quality of materials: processing of the materials is helping to deal with delamination, nickel migration, chromium contamination AST: depend on degradation mechanisms which are still being defined Action Items Add \$/kg as a metric Need to define scale up for both cell size and manufacturing Stacks: thermal management, changing operating mode 	 Summary of discussion Discussed TRL's and adjusted them Cost goals Performance goals Durability goals Manufacturability goals SOEC - intermittent operation so control issues R&D area: what happens when go from FC to EC mode Economics- want high steam utilization so reversibility is desirable. 	 Consensus and/or dissenting opinions Consensus: AST is highly desirable as it will take many tests to develop and validate protocols. Long term and short term tests – (dozens) Dissent on value of SOEC/SOFC reversibility Does increase utilization Do we really want to put the H2 back to electrons back to GRID
	 Key Take-Aways Need to define scale up for both cell size and manufacturing Thermal management for stacks is a gap Steps being taken to improve quality of materials: processing of the materials is helping to deal with delamination, nickel migration, chromium contamination AST: depend on degradation mechanisms which are still being defined 	 <u>Action Items</u> Add \$/kg as a metric Need to define scale up for both cell size and manufacturing Stacks: thermal management, changing operating mode

Name	Affiliation
Mark Williams	Key Logic
Nguyen Minh	University of California San Diego (UCSD)
Kevin Huang	University of South Carolina
Joseph Barton	FuelCell Energy
Thomas Malkow	JRC Petten
Joseph Hartvigsen	OxEon Energy
Scott Swartz	Nexceris
David Peterson	DOE
Richard Boardman	INL
Jamie Holladay	PNNL

Session ID: H2-A Title: Best methods characterizing SOEC

Summary of discussion	Consensus and/or dissenting opinions
 Reviewed practices/protocols and discussed importance lonic conductivity and transference number discussions Electrode size, particle size, surface area, how materials were processed - important to be specified Should characterize specific electrodes Button cell testing is useful? Validation standardization Specific resistance unit and how to report degradation, i.e., mV/kh 	 Protocols needed on Steam content quantification Steam sensing techniques: water vaporization, H2 burners Seals for H+ electrolytes Button cell vs scaled up cell vs 2-cell stack Leakage rate
Kov Tako-Aways	Action Itoms
 Characterizing electrodes requires reporting starting powder as well as processing route Accurate steam measurement on inlet and outlet is vital for electrolysis; need to report utilizations 	 ACtion items ASR units in document was not correct. 5x5 cm testing protocol (J. Barton) Button cell testing protocol (S. Schwartz) Could be standard cells for testing be purchased from Fuel Cell Materials (S.

Session ID: H2-A Title: Best Methods and Practices for Characterizing O-SOEC Materials

Name	Affiliation
Thomas Malkow	JRC Petten
Joseph Hartvigsen	OxEon Energy
Scott Swartz	Nexceris
Amin Nouri	Greenlight Innovation
Robert Bell	NREL
Olga Marina	PNNL
Kevin Huang	Un. of South Carolina
Mark Williams	Key Logic
Nguyen Minh	Un. of California, San Diego
Ani Kulkarni	CSIRO
Joseph Barton	FuelCell Energy

 Summary of discussion Faradaic efficiency measurement of electrolyte materials Transference number measurement metrics: effect of driving voltage, operating temperature, gas compositions Full cells necessary to apply real bias for faradaic efficiency (> 5cm²) 	 <u>Consensus and/or dissenting opinions</u> Agree that Faradaic efficiency is important Dissenting opinions on which factors are dominating Faradaic efficiency: pO₂ vs pH₂O
 Key Take-Aways Transference number measurement protocol is valuable; add T, pO2 Protocols should be reviewed by experts in the field 	 <u>Action Items</u> Complete the Faradaic efficiency measurement protocol (UTRC/INL, H. Ding) Add some metrics into exiting transference number measurement protocol (HTE-P-02): O₂ and H₂ partial pressures, temperature, gas compositions (PNNL)

Session ID: H2-B Title: Best Methods and Practices for Characterizing H+-SOEC Materials

Name	Affiliation
Dong Ding	INL
Xingbo Liu	University of West Virginia
Neal Sullivan	Colorado School of Mines
Harping Ding	INL
Richard Boardman	INL
Jim O'Brien	INL
Scott Swartz	Nexceris
Gary Groenewold	INL
Jamie Holladay	PNNL
Scott Barnett	Northwestern

 Summary of discussion Review of testing metrics and existing protocols Cell, stack, coatings, seals, contact layers and interconnect specifications Testing methods/protocols depend on the scale: Button cell testing yields relatively idealized performance Single cell testing represents stack conditions Detailed diagnostics (EIS) are appropriate at the button cell or single cell scale, but not useful at the stack level Focus on stack testing 	 Consensus and/or dissenting opinions Consensus on need for more stack-level testing and scale-up Include stack operating conditions such as current density, per-cell voltage, steam utilization, constant current or constant voltage operation, hydrogen inlet flow rate, hydrogen recycle, and heat recuperation
 <u>Key Take-Aways</u> Stack testing introduces numerous additional complications beyond cell testing Stacks often require mechanical compression. Scale-up to 10's or 100's of kW should be supported for technology development Intermittent operation should also be considered 	 Action Items Need to develop protocols for stacks testing Cell reduction procedure Mechanical compression (for cell-interconnect contact and seals) heatup profiles Operating conditions Long-term testing Instrumentation Safety

Session ID: H4-A Title: Cell Performance Measurements: Standards, Calibrations, Protocols, Validation

Name	Affiliation
Jim O'Brien	INL
Scott Barnett	Northwestern
Kevin Huang	University of South Carolina
Dong Ding	INL
Xingbo Liu	University of West Virginia
Kevin Huang	University of South Carolina
Scott Swartz	Nexceris
Harping Ding	INL
Mark Williams	Key Logic

Session ID: H4-B Title: SOEC and H+-SOEC Operating **Conditions and Boundaries**

 Simple hydrogen production rate Simple hydrogen production rate I-V, composition dependence, temperature dependence, cycle dependence, time on stream dependence Strategy for choosing operating and boundaries parameters Methodologies to consolidate functionality: Performance mapping, degradation mapping, TEA mapping Projected stack lifetime and operating cost 	 Consensus and/or dissenting opinions Efficiency: use multiple metrics η as %HHV, %LHV, kW-h/kg, kg/MWh, or operating voltage Need to measure H₂ production rate System integration matters
 Example performance maps Image: steam utilization is 50% Image: steam ut	 <u>Action Items</u> Protocol on defining ASR (J. Hartvigsen) Map operating conditions (N. Minh) Operating conditions/boundaries protocol (J. Barton) Pressurized operation (J. Hartvigsen) Thermocycling protocol

1.2

1.3

. 1.4

i 0.9

i 1.5

Session ID: H4-B Title: SOEC and H+-SOEC Operating Conditions and Boundaries

Name	Affiliation
Olga Marina	PNNL
Neal Sullivan	CSM
Gary Groenewold	INL
Nguyen Minh	UCSD
Tianli Zhu	UTRC
Joseph Hartvigsen	OxEon Energy
Joseph Barton	FuelCell Energy
Ani Kulkarni	CSIRO
Jamie Holladay	PNNL

 Summary of discussion How to track degradations; Main degradation mechanisms; Accelerated stress testing - pros and cons for each "accelerating condition" Tests needed at materials, cell, and stack levels; each level provides some useful information, but not all Fixed V, Fixed I, fixed H₂ production rate, are all relevant, yet hard to say one is better than the other. Faraday Efficiency for H+-SOEC 	 Consensus and/or dissenting opinions Agreement on separate protocol development for H-SOEC and O-SOEC Agreement on operating conditions for short term testing with: O-SOEC: temperature 650-850°C; steam content 50%±20%; hydrogen content in steam is 1-5% (or use 50/50 =H₂/N₂ in steam); voltage 1.3-1.4V; current density 1±0.2 A/cm² (or 0.5 A/cm² for electrolyte-supported); test time is 1,500-5,000 hours H-SOEC: 600±100°C; steam content 50%±20%; voltage 1.2-1.4 V; current density 0.5-1.2 A/cm²; use GC to monitor H₂ production; testing time is 500-2,000 hours
 Key Take-Aways How to project realistic HTE performance: do real long-term testing Testing needs to be coupled with post- mortem analyses to understand degradation mechanisms and kinetics Faraday Efficiency needs to be better tracked, for proton-conducting SOECs 	 Action Items Develop draft testing protocols based on the discussion Re-visit the protocol after it is being implemented

Session ID: H5-A Title: Materials and Device Lifetime Testing Protocols

Name	Affiliation
Xingbo Liu	WVU
Nguyen Minh	University of California San Diego (UCSD)
Kevin Huang	University of South Carolina
Joseph Barton	FuelCell Energy
Tianli Zhu	UTRC
Joseph Hartvigsen	OxEon Energy
David Peterson	DOE
Dong Ding	INL
Olga Marina	PNNL
Scott Swartz	Nexceris

 Summary of discussion Reviewed definitions, terms, and metrics Thermal efficiency: vague, do we need it? Overall efficiency discussed Cell Level: H2 HHV/(Vcell)/2F; Faradaic Efficiency, V_{OCV} vs Enernst, Stack level System : H2 HHV/ (electrical + thermal energy) Gas composition- discussion on the need to define this. It does need to be reported. Akin to efficiency metric on [prod rate]/[input power] – kg H2/MW_e-hr not tonne H2/MWhr 	 <u>Consensus and/or dissenting opinions</u> Dissenting opinion on need to define gas compositions. : Note "standard" is not necessarily optimal for a given technology Consensus on Electrical efficiency = LHV H2/Mw_ehr*100 H2 production for a certain condition (V_{TN}) moles H2/cm²/sec Consensus on advantages of HTE vs LTE
 Key Take-Aways Additional definitions are needed (see action list) Important for measured V_{OCV} to be close to theoretical V_{OCV} to ensure cell is operating correctly (i.e. no mechanical leaks, etc.) 	 <u>Action Items</u> Define conditions to measure / calculate OCV versus Nernst (M. Williams) Protocol for Faradaic efficiency (D. Ding) Define ASR in electrolysis mode (N. Sullivan) Define non-linearity with R² fit Define ASR at thermoneutral Protocol to accurately measure H₂ production and gas (mechanical) leakage and electrical leakage – part of faradaic efficiency protocol (H. Ding)

Session ID: H5-B Title: Definitions

Name	Affiliation
Jamie Holladay	PNNL
Nguyen Minh	University of California San Diego (UCSD)
Kevin Huang	University of South Carolina
Joseph Barton	FuelCell Energy
Tianli Zhu	UTRC
Joseph Hartvigsen	OxEon Energy
Ani Kulkarni	CSIRO
Scott Barnett	Northwestern
Harping Ding	INL
Mark Williams	Key Logic
James O'Brien	INL
Gary Groenewold	INL

Summary of discussion	Consensus and/or dissenting opinions	
 Some of the already written protocols needs a revision to make it more generic (rather than specific to one lab) 	 Separate protocol for procedures already covered with ASTM (yes and no from participants) 	
 Need for protocols development reiterated What are we missing? More generic protocols Technical: Some of the missing protocols (assigned as action items) A Central repository (to enable accesses and make tracked changes) to the protocols during development stage Definition of thermal stability: only conductivity? Thermal shock resistance? How about other 	 Protocol may be still written but can refer to ASTM standards (this is for sake of completeness of this whole exercise) Protocols for interconnect not required at this stage (yes and n from participants) Should EIS protocols include modelling? (yes and no from participant) All agree that protocols need revisions and refinement Some of the protocols can be merged into single protocol Agreed conditions for conductivity measurements benchmarking O-SOEC: 500-900C, Wet air (3%), H-SOEC wet H (3%) 	
 Key Take-Aways Revisit protocols P01, P02, P03, and combine into one major document covering all these aspects (total conductivity, mixed conductivity using four probe to be combined into one document) Instead of developing a separate "stability" (P06) document, we can modify measurement protocols by adding one sentence for other document, just mentioning expose to certain hours and measure the properties again EIS should be measured, and Rs & Rp should be extracted, but from benchmarking and protocol development points-of-view, we may not want to go detailed interpretations (modelling of EIS) 	 Action Items New (combined) four probe conductivity measurement protocol Xingbo Liu New protocol for conductivity test for interconnects (Ani Kulkarni) New Protocol for the TPB lengths measurement (Scott Barnette) Link for all current protocols or copies to be sent to all involved in the workshop/s (Olga Marina) Modify P10 (with current collector for button cells) (Kevin Huang) Confirm Benchmarking conditions for conductivity measurement mentioned above (Neal Sullivan) Track what next (Olga Marina) 	
udes OEN, Advense ad Mater Onlitting Materials	• Irack what next (Oiga iviarina)	

Session ID: H6-A

Title: Wrap-up

Name	Affiliation
Scott Barnett	Northwestern
Kevin Huang	University of South Carolina
Ani Kulkarni	CSIRO
Harping Ding	INL
Dong Ding	INL
Xingbo Liu	WVU
Neal Sullivan	CSM
Gary Groenewold	INL
Thomas Malkow	JRC Petten
Amin Nouri	Greenlight Innovation

Summary of discussion	Consensus and/or dissenting opinions
 Potential gaps Lots of discussion on economics and balance-of-plant Discussed differences between small cells, large cells and stacks in terms of different needs Discussed need for accelerated stress testing of button cells, full size cells, and stacks (short and full) 	 Balance-of-plant: consensus that it is very important, but dissenting opinions on if HydroGEN should do it. The majority thought it was outside the scope of HydroGEN Consensus: HydroGEN should focus on materials which limits it to small cells. Large system testing should not be part of HydroGEN Consensus: Accelerated stress testing is important, but requires a lot of testing to develop Consensus: Round robin testing will be important, but not sure how it will be funded Consensus: Workshop in FY20 is important
 Key Take-Aways Gap: durability protocol for oxygen and proton conductors Gap: stack durability protocol Roadmap: need to add scaling cell size up and new optimal stack design (not all SOFC can be adopted) Gap: define control (null) experiment for material testing Gap: What standards are we to use (ASTM, codes committees?) Gap: include why protocol methodology is recommended (lessons learned), how to analyze the data Gap: advanced manufacturing development to decrease costs Gap: Accelerated stress test will need to be developed for each degradation mechanism. This will take a lot of testing. 	 Action Items Priorities: define what is the standard cell? Who makes? How much will it cost to the users (universities)? Define what is the standard stack? What is the standard size? What is the standard operation conditions? Move from small button to single large cells Round Robin testing – how this will be funded? Accelerated stress testing: tests will need to be developed for each degradation mechanism. This will take a lot of testing. A high throughput testing system is needed.

Session ID: H6-B

Title: Wrap-up

Name	Affiliation
Mark Williams	Key Logic
Nguyen Minh	University of California San Diego (UCSD)
Olga Marina	PNNL
Joseph Barton	FuelCell Energy
Jim O'Brien	INL
Joseph Hartvigsen	OxEon Energy
Scott Swartz	Nexceris