

Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop

Breakout Session Summaries *High Temperature Electrolysis*

October 24-15, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Energy Materials Network

U.S. Department of Energy

Breakout Session #	Session ID	Technology	Торіс	Lead
	H2-A			
2		HTE	Electrolytes: Oxygen and Proton Conductors	Mike Tucker (LBNL)
3	H3-A	HTE	Electrode Activity & Stability	Joseph Barton (FuelCell Energy)
4	H4-A	HTE	Cell Test Protocols	Mark Williams (AECOM)
5	H5-A	HTE	In situ Methods for Degradation Studies	Xingbo Liu (WVU)
6	H6-A	HTE	Stack Testing Protocols	James O'Brien (INL)

 Summary of discussion Lots of different test protocols discussed: materials compositions, cell designs, quality of standard cell fabrication (must be extreme), humidification method, steam conversion, constant current vs voltage. PCEC - Faradaic efficiency is often not reported or measured. Important! "Standard" cells with same material can be very different. Important to measure steam concentration, steam utilisation and if steam-starved (not just give pH₂O,%). Electrolyte materials test matrix - Techniques used in combination to find properties 	 Important to have benchmark cell and benchmark test. The benchmark results should be obtained in the same test rig.
 Key Take-Aways Benchmark cell - would be very useful. Ability to buy (from a single manufacturer to ensure consistency) and test in own rig. Cell should come with validation curve and standard test protocol and should have values for all characterisation parameters reported. Standard electrolyte material that has to use with own electrode materials - not useful due to materials compatibility issues. BUT option of buying electrolyte from benchmark cell, so can test own electrodes 	 Action Items Oxide ion conducting - 8YSZ as benchmark Proton conducting - no benchmark composition at the moment but something that should be worked towards as a priority

 Proton vs oxide ion conducting – need separate benchmark (different test apparatus, gas supply, etc)
 HydroGEN: Advanced Water Splitting Materials

Summary of discussion		Concensus and lar discenting opinions	
•	Electrode development is core R&D Electrolyte-supported cells with 8YSZ as benchmark; Ni- YSZ is standard fuel electrode; leverage on SOFC expertise and materials Air electrode often limits performance; discussed LSM, LSM/YSZ and LSCF. Chose LSCF for benchmarking Current collectors – avoid Pt, use Au or perovskite; purchase cell with current collectors and wires Symmetrical cell is okay for benchmarking: would be great to have a reference electrode, but likely will introduce additional error	 Benchmarking will promote innovation: how to beat (good) benchmarking cell All agreed to participate in Round Robin validation Accelerating tests are not possible at the moment, as cell is exposed to extreme conditions 	
Ke	v Take-Aways		
	, inite / iti a / u	Action Itoms	
•	Many factors are important for electrode standard: accurate raw material composition, fabrication steps, microstructure, particle size, thickness, sintering temperature, porosity: would rather purchase from a manufacturer with a high quality control (>1000 cells for statistical analysis) Cell pre-conditioning is as important as testing and will be benchmarked Comparison should be performance driven: H2 production (measure by current and by GC)	 Action Items How to make Round Robin tests a reality: who pays for validation How do we accelerate commercialization: need demonstration (just like SOFCs) 	
•	Many factors are important for electrode standard: accurate raw material composition, fabrication steps, microstructure, particle size, thickness, sintering temperature, porosity: would rather purchase from a manufacturer with a high quality control (>1000 cells for statistical analysis) Cell pre-conditioning is as important as testing and will be benchmarked Comparison should be performance driven: H2 production (measure by current and by GC) Standardizing test and operation condition are critical	 Action Items How to make Round Robin tests a reality: who pays for validation How do we accelerate commercialization: need demonstration (just like SOFCs) 	

Summary of discussion	Consensus and/or dissenting opinions
 Economics: commercialize technology and H2@Scale program Leverage as much on the SOFC technology Cell will be electrolyte-supported, with Ni-YSZ fuel electrode and LSM or LSCF air electrode; don't bring new materials in benchmarking as it adds new problems Testing protocols: is cell size important? Report active electrode area. Discussion on Thermal Management (at >5x5 cell size, heat transport and steam utilization become important). Startup Procedure: Ni reduction step may have significant implications on future cell performance, Open Circuit Voltage to monitor for stability (overnight suggested) Test as SOFC and switch to SOEC What parameters to report? - Current @ constant V, H2 produced (GC), Steam 	 All agreed on the importance of the Benchmark test. Our future protocols will be "recommendations", not requirements Agreed that thermal management should be ignored in single cell testing.
Utilization, Periodic IV curves with reversal into Fuel Cell mode, AC Impedance	
 Utilization, Periodic IV curves with reversal into Fuel Cell mode, AC Impedance Key Take-Aways Thermal management should be ignored for single cell testing Should test @ 800 C and for at least 100 hours Ni/YSZ fuel electrode with YSZ electrolyte and GDC blocking layer with LSCF material set chosen for Benchmark test 	 Action Items Prepare GoogleDoc spreadsheet where we can share our Testing Protocols. Pursue project for Benchmark cell production/distribution of cells H2@Scale webinar on HydroGEN

Summary of discussion	Consensus and/or dissenting opinions
 Current focus has been performance driven 2 types of degradations: reversible (e.g., ion accumulation) and irreversible (phase separation/formation, microstructure change, mass transport, oxidation species, diffusion) Should we operate cell @constant current and monitor voltage or at @constant voltage and monitor current, or it does not matter. Faradaic efficiency and energy balance should be calculated Not possible to carefully measure H₂ production rate on small O²⁻ conducting cells, but possible on large cells and on any PCEC. EIS at a bias current or voltage; deconvolution EIS data; equivalent circuit model Should we report ASR degradation rate, rather than V or I. Determine how ASR is calculated. Acceleration/stress tests could be misleading 	 Higher efficiency in HTE than in LTE Higher degradation is seen in SOEC mode than in SOFC mode Majority agrees degradation should be measured under either constant current or constant voltage conditions. Minority thinks it should be measured under constant current only.
 Key Take-Aways In-situ techniques are important to understand fundamental mechanisms and should be part of the consortium. EIS should be done under bias/operation 	 Action Items Sharing the data to help computational modelers to predict life-time
conditions	Revisit the topic later

• Nat Lab Nodes can provide capabilities each project cannot afford, such as high pressure, in-operando, scale-up button cell etc.

HydroGEN: Advanced Water Splitting Materials

Summary of Discussion Stack testing introduces additional complications that are not considered when doing button-cell or single-cell testing:

- The repeat unit includes an oxygen-side flow field, oxygen electrode, electrolyte, steam/hydrogen electrode, steam/ hydrogen flow field, and interconnect/separator plate.
- There may be additional flow field/ interconnect coatings and contact layers.
- The stack may be internally or externally manifolded.
- Stack sealing and differential expansion must be considered.
- Stacks often require mechanical compression.
- The heat-up procedure is critically important.

Consensus and/or dissenting opinions

- Stack testing represents a fundamentally more difficult test regime compared to button cell testing.
- Additional considerations include stack operating conditions such as current density, per-cell voltage, steam utilization, constant current or constant voltage operation, hydrogen inlet flow rate, hydrogen recycle, and heat recuperation.

Key Take-Aways

- Large-scale stack testing requires big investment and is done mostly for demonstration purpose, not for R&D
- Short stack testing is most appropriate for the HydroGEN EMN Program
- A standard stack should be developed for testing at multiple locations

Action Items

- Develop standard (reference) short stack and associated test protocols
- Identify funding for the joint effort