

Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop

Breakout Session Summaries PEC

October 24 - 25, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Energy Materials Network

U.S. Department of Energy

Session ID	Торіс	Lead
P2-A	Protocol development in a half cell vs. a full cell	Todd Deutsch
P2-B	In situ/operando methods for PEC interfaces and devices	Shu Hu & Walter Drisdell
P3-A	Protocols for PEC stability testing	Kimberly Papadantonakis
P3-B	PEC electrolytes	Adam Weber
P4-A	Prototype formats and key metrics for benchmarking	James Young
P4-B	Protocol development on OER/HER activity benchmarking at intermediate/dynamic current density	Nemanja Danilovic
P5-A	PEC Nodes capabilities and gaps assessment	Tadashi Ogitsu
P6-A	PEC Workshop Action Items	CX Xiang

 Summary of Discussion What leads to different results in half vs. full- cell is unknown Full cell testing should be done if it is possible The field needs to be made aware of these differences A study to quantitatively evaluate the differences should be done 	 Consensus or Dissenting Opinions Consensus: Diagnostic half-cell testing is useful but should not be used to predict full-cell efficiency or durability
 Key Take-Aways The shortcoming of half-cell test is not widely recognized by the fields More groups reporting their failed test would be useful to raise awareness of this issue 	 Action Items The PIs of groups that have full-cells capable of spontaneous water splitting (JCAP, NREL, Zetian) should discuss 2E vs. 3E testing and consider writing a perspective piece.

P2-B In situ/operando methods for PEC interfaces and devices

Summary of Discussion

- Goal: how operando analysis help address the trade-off between efficiency and stability?
- Degradation occurs at various time-scales; how to use in-situ analysis to develop Accelerated Stress Testing (AST) protocols?

Consensus or Dissenting Opinions

- Delineate different interfaces that's important for PEC.
- All interfaces are important, don't know where the failure took place, but definitely has priorities.
- One emphasis mentioned here is the dynamics between material and electrolytes (corrosion, deposition of impurities, morphology changes
- In situ and operando methods, especially synchrotron facilities, useful to look at device level performances, but low throughput.
- Other in situ methods, ICP-MS or ATR-IR or microscopy, instead of synchrotron to look at device level performances.

Key Take-Aways

- In situ and operando measurements maybe categorized for different purposes:
- 1) Performance based -> benchmarking protocols
- 2) Discover based -> theory
- Framework: Theory in the center; feed to Benchmarking protocols, underlies the best practice suggested by experts; Degradation of catalysts, absorbers; interfaces need theory inputs;
- Benchmarking protocols should not be restrictive to certain materials, but a general guidance.

Action Items

- Sharing information/Database
- Establish a flow chart/staged pyramids to understand the need of synchrotron measurements,
- Simplest/minimal measurements needs to do
- Strategic: match making between nodes and PEC community to understand the critical needs; improving durability beyond 100 hours.
- Degradation mechanism for photoelectrochemical interfaces; A mini review paper, what are the compromises?(Shu Hu et al.)

Summary of Discussion

- How to relate three-electrode to two-electrode stability experiments? What are the right test conditions (potential, current density)?
- How can we understand degradation mechanisms for complex interfaces ? Mechanistic studies are time-consuming.
- Current best practices include chronoamperometry or chronopotentiometry, analysis of electrolyte for dissolved species, and before/during/after imaging or spectroscopy.
- Tests only detect certain mechanisms, current focus is on electrochemical mechanisms, but other pathways (e.g. chemical or erosion) may be important at longer timescales.

Consensus or Dissenting Opinions

- 3-electrode experiments are important tools for testing component stabilities, but these tests are typically not performed at the operating points of a 2-electrode device.
- If we can define "standard" operating characteristics for a counter/partner electrode and cell resistances etc, then we can relate 3-electrode to 2-electrode measurements.
- We do not need to define a minimum electrode area for testing, but do need to provide statistically representative results, not just champions.
- PEC community is not well aware of practices in corrosion science/engineering and might learn a lot from that field.

Key Take-Aways

- PEC stability testing is complex and challenging.
- There is a need to understand how to relate 3electrode and 2-electrode stability testing.
- PEC community would benefit from increased knowledge of mechanisms of degradation in the systems we study.

Action Items

- Comparison of stability from 3-electrode and 2electrode experiments, at various operating points. This could include some modeling or providing "standard" operating characteristics to allow estimates of 2-electrode results from 3electrode tests (CX and Shu) but also includes gathering and comparing actual data (James and Todd, as per ad hoc PEC session)
- Review and collect knowledge from corrosion field and see where that maps onto PEC stability. Progress talk at Spring MRS, and a review/perspective thereafter (Kimberly)

Adam Weber

 Should we standardize the electrolyte for PEC testing? Suggest 3 electrolytes: 0.5 M H2SO4 Phosphate vs. borate buffer 1M KOH Is it a system? What characterization should we use benchmark electrolyte? Discussed solid electrolytes as well 	 Consensus or Dissenting Opinions Need to worry foremost about safety and cost Ensure that electrolyte is not sacrificial Transport properties beyond conductivity could be important Water transport, bubble management, gas solubility/permeation
 Key Take-Aways Electrolyte choice should not be restrictive There could be effects due to spectator counterion Note that pH should be measured Local conditions are critical so stability by soaking is not enough, need to test in operating cell where pH gradients can form 	 Action items Suggest possible acid, neutral and alkaline electrolytes to use Includes purity assessment Understand interactions with light Interaction with other components including both chassis and photoelectrodes

P3-B

PEC electrolytes

P4-A Prototype formats and key metro benchmarking	ics for James Young
 Summary of Discussion List metrics for benchmarking What makes a prototype? Feedback on current NREL photoreactor platform 	 Consensus or Dissenting Opinions Prototype – what makes a prototype? All necessary components present (e.g also membrane) Unit cell that is designed with ability to be scaled or tiled Too early in the field for a true prototype, but a standard platform would be valuable Particulate systems out of scope of platform designs
 Key Take-Aways Efficiency, durability (other sessions), cost (out of scope) Efficiency (focus efficiency for this break-out) JV (two-electrode) Area definition IPCE Faradaic efficiency H2 and O2, crossover measurement Durability-efficiency link Total H2 produced metric Component level benchmarking, example HydroGEN: Advanced water is writing Twattane benchmarking 	 Action items Initial RR with LBNL as part of PEC Supernode Initial hands-on exposure testing by other interested groups, eventually NREL/LBNL provide benchmarking measurements

P4-B Protocol development on OE at intermediate/dynamic curr	ER/HER activity benchmarking Nemanja rent density Danilovic
 Summary of Discussion Motivation behind intermediate current density/diurnal Crosscut with LTE both ways No existing protocols for either 	 Consensus or Dissenting Opinions Planar versus "roughened electrodes, liquid vs solid electrolytes Lots of potential issues with bubbles current distribution etc Living document/protocol that is updated
 Key Take-Aways LTE protocols exist for <20mA/cm2 can adapt these Turnover frequency for LTE is much lower than in PEC, can decrease loading to stress as protocol 	 Action Items Perform RDE (LTE) loading study for activity and stability with nanoparticles, repeat with sputtered film. Create baseline Flooded GDE type measurement would allow 100mA/cm2

PEC Nodes capabilities and gaps assessment

P5-A

Tadashi Ogitsu

Summary of Discussion	Consensus or Dissenting Opinions
 How could HydroGEN Nodes can be useful or be more useful for broader community, other than the seedling project. Nodes don't exist that should exist. Nodes functioning so far? how's the interaction between nodes and PIs ? 	 Lots nodes seems comprehensive, there might still be lack of capabilities, but need to prioritize the nodes to make sure that top 80% of the needed nodes are up and running and operational. If we can define "standard" operating characteristics for a counter/partner electrode and cell resistances etc, then we can relate 3-electrode to 2-electrode measurements. More outreach to others through videos, conferences, etc. How do we recognize ourselves as a people in HydroGEN: PIs, Node experts, affiliates or others for potential node users, get some access to data?
Key Take-Aways	Action Items
 There is a mechanism for outsider PIs, CRADA agreement, etc, already exist, supposedly fast interaction with Nodes. But needs improve kinetics of the process, to increase the awareness of this. People recognize that lots of barriers exists for this type of engagement: Researchers from NSF wont be sending money to labs post engagement was good, Science has been benefited greatly through interaction with nodes and others. (funding mechanism, bit strange process before FOA.) HydroGEN: Advanced Water Splitting Materials 	 A workshop for addressing Node usage, LTE&HTE joint session and a reception for other researcher to engage. Go beyond the current role for Nodes, which is a unique instrument combined with people with expertise. Some sort of consulting type of roles for nodes experts to interact with researchers, sorta like holding office hours once a month, or publish a webinar, or some tutorial videos for common question and issues.

- Literature review and synthesis on corrosion science and applicability to PEC (Kimberly Papadantonakis, talk scheduled at MRS Spring 2019)
- A working group and a mini review on PEC in situ/operando analysis (Shu Hu, Tony Van Buuren, Walter Drisdell, Tadashi Ogitsu, CX Xiang, talk scheduled at MRS Spring 2019)
- A mini review/view points on PEC 2-electrode vs. 3-electrode (Todd Deutsch, talk scheduled at MRS Spring 2019)
- NREL+NREL round robin testing PEC prototypes (James Young, Nemanja Danilovic, talk scheduled at MRS Spring 2019)