

Ca-Ce-Ti-Mn-O-Based Perovskites for Two-Step Solar Thermochemical Hydrogen Production Cycles

Rob Wexler

Washington University in St. Louis

August 21, 2023

Project Partners

Arizona State University (Ellen B. Stechel, Ivan Ermanoski, and James E. Miller)

Ohio State University (Shang Zhai)

Project Vision

Off-stoichiometric CCTM has been synthesized, characterized, and optimized (for high efficiency, cyclability, and durability). On-sun (solar furnace) high-productivity H_2 has been demonstrated.

Project Impact

- Optimization and de-risking of CCTM, a highly promising perovskite for STCH, which could surpass ceria performance and economics
- Multi-scale computational workflow with a proven track record of success in the design of competitive STCH redox-active materials
- Labyrinth Reactor to achieve 1 g/h H₂

Project Goal

To maximize the efficiency of two-step STCH with CCTM oxide perovskites by composition engineering to achieve high efficiency so that we can feasibly target low cost hydrogen production.

BP	Milestone	Key metric
1	CFM constructed, and DFT enthalpy optimizing CCTM composition identified	Reduction enthalpy
2	$\Delta \delta/N = 0.01$ for ceria (N=3 atoms achieved at 1773 K and pO ₂ =10 Pa) surpassed by a CCTM composition (N=5 at 1623 K and pO ₂ =10 Pa) able to re-oxidize in 1000:1 H ₂ O:H ₂ (75% of pure steam in Ar)	Off-stoichiometry per atom
2	The thermodynamic model (CEF) constructed for CCTM accurately represents the compositional space, with "accurately" defined as predicting the off-stoichiometry δ at a given temperature (T) and pO ₂ to within 20% of measurements.	Off-stoichiometry per atom
3	Efficiency-maximizing CCTM composition and STCH conditions identified, and 1 g/h H_2 demonstrated.	STCH efficiency, cyclability, durability, and H ₂ production yield, rate

Approach Summary

$$\frac{1}{\Delta\delta}Ca_{1-x}Ce_{x}Ti_{y}Mn_{1-y}O_{3-\delta_{0}}(s) \rightleftharpoons \frac{1}{\Delta\delta}Ca_{1-x}Ce_{x}Ti_{y}Mn_{1-y}O_{3-\delta_{0}-\Delta\delta}(s) + \frac{1}{2}O_{2}(g)$$
$$\Delta\delta = f(x, y, T, pO_{2})$$

Node Pl	Node Title
Zhiwen Ma	Techno-Economic Analysis of Hydrogen Production
Janna Martinek and Alon Lidor	Multi-Scale Thermochemical and Electrochemical Modeling for Material Scale-Up to Component and System Design
David Ginley and Robert Bell	Controlled Materials Synthesis and Defect Engineering
Josh Sugar	Advanced Electron Microscopy
Sean R. Bishop	High-Temperature X-Ray Diffraction (HT-XRD) and Complementary Thermal Analysis
Anthony McDaniel	Virtually Accessible Laser Heated Stagnation Flow Reactor for Characterizing Redox Chemistry of Materials Under Extreme Conditions
Kenneth Armijo	National Solar Thermal Test Facility (NSTTF)
	Node Pl Zhiwen Ma Janna Martinek and Alon Lidor David Ginley and Robert Bell Josh Sugar Sean R. Bishop Anthony McDaniel Kenneth Armijo