

Inverse Design of Perovskite Materials for Solar Thermochemical Hydrogen Production

PI: C. Muhich Arizona State University

Aug. 21, 2023

Project Overview

Project Partners:

Ellen Stechel

Rohini Bala Chandran

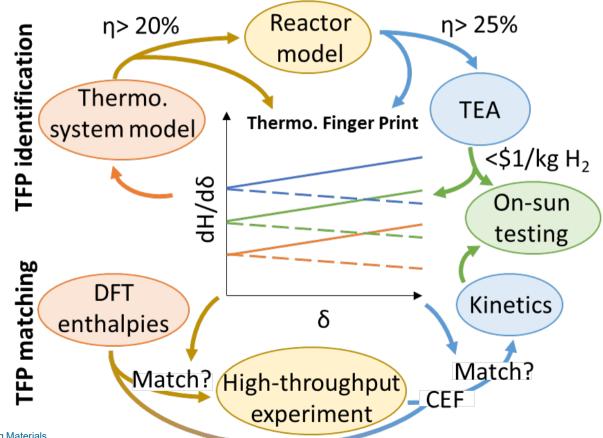
Peter Krenzke , Luke Venstrom

Project Vision:

We will implement an inverse materials and reactor design approach to discover a perovskite material (ABO₃) and receiver/reactor design to achieve DOE cost targets. We will use a cascade of thermodynamic, reactor, and technoeconomic analysis (TEA) models to identify material thermodynamic fingerprints (TFP) for optimal performance

Project Impact:

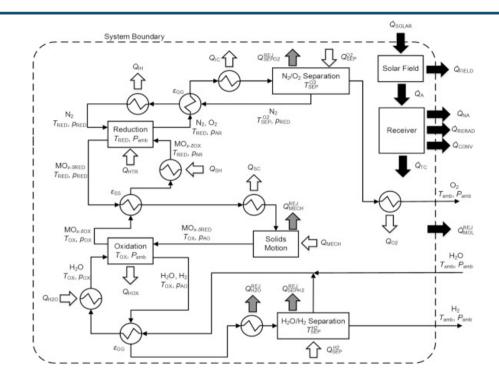
Identification of at least one quinary perovskite composition


 $(A_{1-x}A'_{x}B'_{y}B_{1-y}O_{3})$ that can achieve <\$1.5/kg H₂ at scale, a 70-80% reduction from state-of-the-art CeO₂, demonstration of >1g H₂/hr production on sun, material stability for at least 100 cycles, and a reactor and plant design pathway that can achieve <\$1/kg H₂ at scale

	Key Milestones & Deliverables
Year 1	Identify compositions with > 20% STH efficiency based on the first order compound energy formalism as predicted by the thermodynamic system model
Year 2	TEA predicted cost of $2.5 / \text{kg H}_2$, a 50-60% reduction compared to SOA CeO ₂ , using experimentally measured thermodynamics properties and bulk processing costs
Year 3	Identify perovskite compositions that can achieve < 1.5 /kg H ₂ , demonstrate >1g H ₂ /hour production on sun, show stability for 100 cycles, and outline a reactor and plant design pathway that can achieve < $1/kg$ H ₂

Approach Summary

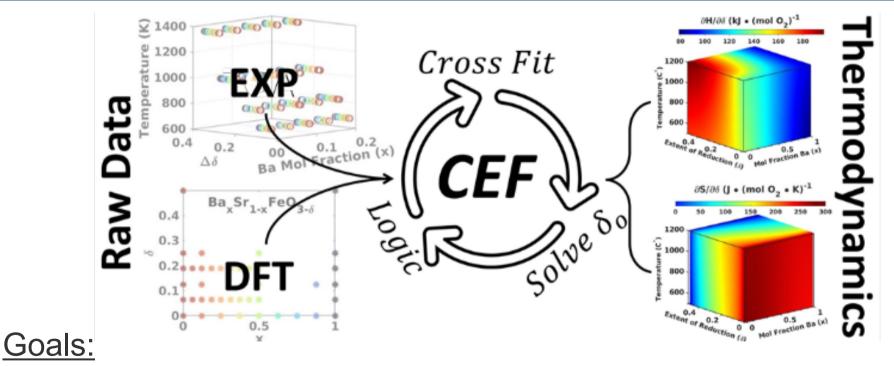
Task 1: Project Management & Market Transfer



Goals:

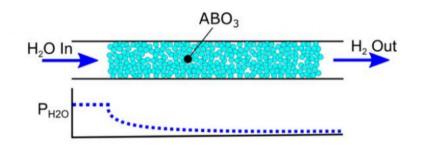
Organize bi-weekly team meetings, cross-institution communication, prepare of reports and reviews, and develop/implement market planning

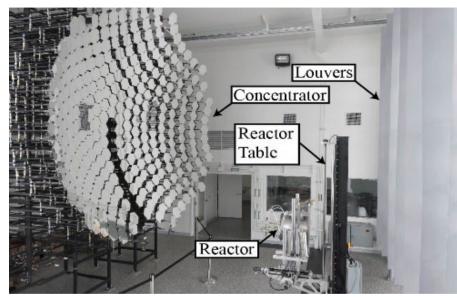
Task 2: Thermodynamic and plant level modeling & TEA


Goals:

Identify material performance to cost ratios and plant performance metrics required to achieve $1/kg H_2$

HydroGEN: Advanced Water Splitting Materials


Task 3: High-Throughput Materials Development



Identify $A_{1-x}A'_{x}B'_{y}B_{1-y}O_{3}$ that match's ideal TFP using high throughput DFT and novel high-throughput experiments

Task 4: Reactor Design and On-Sun Demonstration

Goals:

Solar furnace at Valpo

Model, design, and experimentally test new flow reactor configurations that maximize the material utilization and therefore solar-to-fuel efficiencies.

HydroGEN: Advanced Water Splitting Materials

Lab	Node	Scope
NREL	Techno-economic analysis	Consulting and TEA mapping
NREL	Multi-scale modeling	Consulting and reactor scale-up
Sandia	Stagnation Flow Reactor	Kinetic extraction
Sandia	High-Temp XRD	Material characterization
Sandia	Advanced Electron Microscopy	Material characterization
INL	Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis	High throughput synthesis

