

Non-intermittent, Solar-thermal Processing to Split Water Continuously via a Near-isothermal, Pressure-Swing Redox Cycle

Alan (Al) Weimer University of Colorado Boulder August 21, 2023

Partners: University of Colorado Boulder Department of Chemical and Biological Engineering; CU Bold Center; HFTO HydroGen Consortium – NREL; OMC Hydrogen; and ETH Zurich

Project Vision: We hope to experimentally demonstrate a solar-to-fuel energy efficiency greater than 10%, representing nearly a twofold increase over the current record; and a hydrogen production rate of 1 g/h using simulated sunlight for over two weeks using a 10kW thermal HFSS to demonstrate robustness of active materials.

Project Impact: We hope to revitalize interest in STCH through both experimental demonstration and a TEA for a continuous process - developing the iron aluminate-based, STCH production approach for splitting water and establish modeling tools to simulate reactor and system performance to guide design of future reactor iterations; and to identify cost implications associated with decoupling the reactor from the solar receiver via gas heating and thermal storage using a high-temperature thermocline.

• Milestones & key metrics

Milestone 1.1 (Q3; 9 months): Establish congruency between power measurements determined via the flux mapping and water-cooled calorimeter-based methods.

Milestone 1.2 (Q5; 15 months): Complete existing system modifications and computationally and/or experimentally determine minimum fluidization velocity for the as-synthesized iron aluminates.

Milestone 2.1 (Q2; 6 months): Establish that (1) the elemental composition of the representative *in-house sample* agrees with the respective target values and (2) the percent relative change in equilibrated mass at 1400°C between oxygen partial pressures of 10⁻² and 10⁻⁴ bar exceeds 0.8%.

Milestone 2.2 (Q4; 12 months): Replicate Milestone 2.1 for the *commercially-procured, large-scale sample*.

Milestone 3 (Q1; 3 months): Computationally identify conditions that result in peak efficiency for both isothermal and near-isothermal ($\Delta T < 200^{\circ}$ C) operating modalities, ensuring that the evaluated conditions are practical.

Milestone 9.1 (Q4; 12 months): Interview prospective BOLD undergraduate students in early fall 2023 or spring 2024, one of which will be hired to work on the project.

• Milestones & key metrics

Go/No-Go 1 (End of Q4; 12 months): Using the existing system and ~10 grams of iron aluminates, synthesized inhouse, demonstrate a production capacity greater than 550 μmol g⁻¹ for 5 consecutive cycles, quantify the accompanying solar-to-fuel energy efficiency, and compare measured performance with model predictions. Then, determine the mass loading required to achieve an efficiency of 10% to inform the design of the next iteration reactor (**Milestone 1.2, Task 1**), as well as dictate the geometrical configuration of the heat exchanger to be developed in **Task 4**.

• Milestones & key metrics

Milestone 4 (Q6; 18 months): Successfully fabricate and install a robust counter-flow gas-gas heat exchanger, which comprises RPC structures contained within the inner and annulus regions of two concentrically aligned tubes.

Milestone 5 (Q5; 15 months): Deliver ~2 kg of iron aluminates, synthesized at large scale via the optimal method determined from Task 2, to ETH Zürich for evaluation in their "solar mini-refinery" system.

Milestone 6 (Q8; 24 months): Develop (1) a TEA that will accurately determine the process variables allowing for a 10% IRR for a H_2 selling price of \$2/kg H_2 , along with tornado plots identifying the most critical parameters and (2) a marketing report identifying commercial opportunities for each case. An analysis of the Installation Tax Credit vs the Production Tax Credit for the economics will also be carried out.

Milestone 7 (Q7; 21 months): Validate reactor model by comparing simulated O₂ evolution and H₂ production rates with experimentally measured data obtained at CU's high-flux solar simulator facility.

Milestone 8 (Q8; 24 months): Submit list comprising instances of scientific research dissemination, including oral and poster presentations as well as scientific articles (in preparation and submitted), to EERE for review.

Milestone 9.2 (Q8; 24 months): During the spring 2025 semester in Year 2, a BOLD undergraduate capstone design team will be selected to complete the TEA, working with the project team for support.

Approach Summary

Scope of work:

- Using both CU's HFSS and ETHZ's solar dish, demonstrate world-record efficiency for solar thermochemical fuel production. Operation will include isothermal to nearisothermal (< 150°C temperature swing), iron aluminate redox.
- Deliver 1g H₂/hr for two weeks
- 3) Design, build, integrate ceramic HX for heat integration
- 4) Modeling
- 5) Develop robust TEA

Lab	Node Pl	Node Title	Brief Scope	Budget Period 1 Funding	Brief Scope	Budget Period 2 Funding	Total
NREL	Zhiwen Ma	Multiscale modeling node and STCH TEA node	NREL will perform components (reactor, HX, TES) and STCH system modeling and establish a TEA framework for CU STCH system and renewable integration with TES continuous.	\$375, 000	Validate reactor model with CU's HFSS test. System analysis for component cost and TEA inputs and support commercial paths	\$375,000	\$750,000
				\$375,000		\$375,000	\$750,000

Approach Summary

		Before Oxidation:	Oxid	ation:	Reduction:
	Material	Log ₁₀ (pO ₂ /atm)	Pressure (atm)	CO Produced (µmol g ⁻¹)	O ₂ Evolved (µmol g ⁻¹)
Isothermal	Ceria	-4.7 ± 0.01	1	71.1 ± 5.3	65.1 ± 0.6
isotitettiai			2	83.0 ± 5.2	68.0 ± 0.6
Redox			3	83.3 ± 5.2	67.6 ± 0.6
@ 1400°C			5	83.2 ± 5.5	83.0 ± 0.7
6 1400 C	Fe33A167	-4.6 ± 0.01	1	356 ± 8.1	201 ± 1.0
			2	460 ± 7.8	234 ± 1.1
			3	510 ± 7.7	256 ± 1.2
			5	588 ± 7.8	283 ± 1.2
				545 ± 7.7	282 ± 1.2
				552 ± 7.7	283 ± 1.2
				556 ± 7.7	281 ± 1.2
			10	768 ± 9.9	$3\overline{81 \pm 1.4}$

Tran, J., K.J. Warren, et al, Joule, 7, 1759–1768, August 16, 2023

Approach Summary

Peak rates after accounting for the effect of gas phase dispersion and Mixing at oxidation P and 1400°C

Extent of oxidation as a function of inlet CO_2 :CO ratio at P and 1400°C (top panel based on equilibrium of CO_2 thermolysis)

Tran, J.T., K.J. Warren, et al, Joule, 7, 1759–1768, August 16, 2023

2023 Team Retreat at Beaver Meadows Ranch Resort

