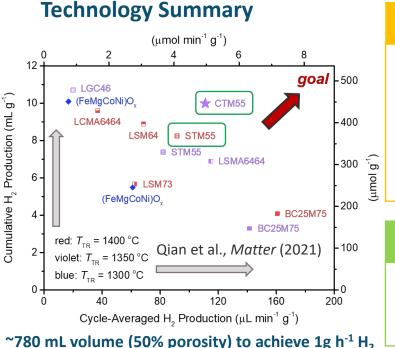


Scalable Solar Fuels Production in A Reactor Train System by Thermochemical Redox Cycling of Novel Nonstoichiometric Perovskites

Dr. Xin Qian Saint-Gobain DE-EE0010739 August 21, 2023

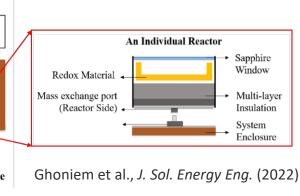
DOE HydroGEN FY22 FOA Solar Fuels Project Kickoff Meeting

This presentation does not contain any proprietary, confidential, or otherwise restricted information



Project Overview

Electricity for Solar Energy Auxiliary Work Heat Thermal ΓES Engine Storage H_2O H_2 Radiative Heat Radiative Heat Sink Source Reduction Zone Heat Recovery Zone Oxidation Zone


Materials

- Build on CTM55 series;
- Maximize fuel production by optimizing Ti/Mn ratio and engineered microstructure;
- New materials discovery by high-throughput approach;

Solar Reactor

Reactor Train System

- Construct novel RTS reactor;
- Demonstrate scaled hydrogen production by material/RTS;

Project Partners

Saint-Gobain (Dr. Xin Qian, Dr. John Pietras), Heliogen Holdings Inc. (Dr. Andrew Muto), Northwestern University (Dr. Sossina M. Haile) MIT (Dr. Ahmed Ghoniem, Dr. Asegun Henry)

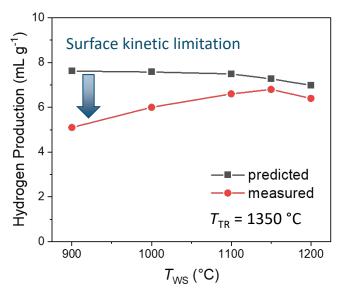
Program Summary

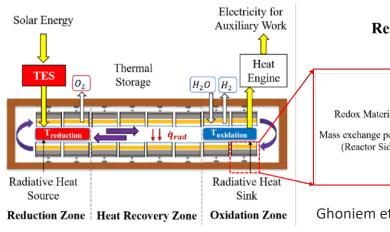
Federal funds: \$ 1,071,977 Cost-share: \$ 268,102 Period of performance: \$1,340,079 **Total budget:** 36 months (10/2023 - 09/2026)

Timeline	Key Milestones & Deliverables
Year 1	 Identify perovskite with Δ_{red}H in the range of 240-280 kJ (mol-O)⁻¹ and Δ_{red}S >90% of CTM55; Demonstrate microstructure impact on reaction kinetics;
Year 2	 Achieve a H₂ yield ≥ 12 mL g⁻¹ for ≥ 20 cycles; Design/construct reactor to deliver > 20% efficiency;
Year 3	• Show H ₂ production at target rate of 1g h ⁻¹ .

Technology Impact

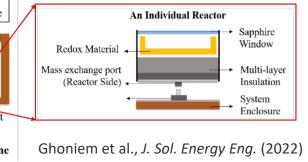
- Develop materials/reactor combination to demonstrate scaled H₂ production at a rate \geq 1g h⁻¹ with >20 % efficiency;
- Revolutionize STCH technology to advance the commercial readiness & facilitate to achieve DOE's cost target of $\frac{1}{kg-H_2}$;
- Enhance DEI by engaging underrepresented groups in the project; ٠
- Create potential business opportunities in concentrated solar power industries for companies such as Saint-Gobain and Heliogen;


HydroGEN: Advanced Water Splitting Materials


Project Overview

Technology Summary

~780 mL volume (50% porosity) to achieve 1g h^{-1} H₂


Materials

- Build on CTM55 series;
- Maximize fuel production by optimizing Ti/Mn ratio and engineered microstructure;
- New materials discovery by high-throughput approach;

Solar Reactor

- Construct novel RTS reactor;
- Demonstrate scaled hydrogen production by material/RTS;

Reactor Train System

Project Partners

Saint-Gobain (Dr. Xin Qian, Dr. John Pietras), Heliogen Holdings Inc. (Dr. Andrew Muto), Northwestern University (Dr. Sossina M. Haile) MIT (Dr. Ahmed Ghoniem, Dr. Asegun Henry)

Program Summary

Period of performance:

Federal funds: \$ 1,071,977 Cost-share: \$ 268,102 \$ 1,340,079 **Total budget:** 36 months (10/2023 - 09/2026)

Timeline	Key Milestones & Deliverables
Year 1	 Identify perovskite with Δ_{red}H in the range of 240-280 kJ (mol-O)⁻¹ and Δ_{red}S >90% of CTM55; Demonstrate microstructure impact on reaction kinetics;
Year 2	 Achieve a H₂ yield ≥ 12 mL g⁻¹ for ≥ 20 cycles; Design/construct reactor to deliver > 20% efficiency;
Year 3	• Show H ₂ production at target rate of 1g h ⁻¹ .

Technology Impact

- Develop materials/reactor combination to demonstrate scaled H₂ production at a rate \geq 1g h⁻¹ with >20 % efficiency;
- Revolutionize STCH technology to advance the commercial readiness & facilitate to achieve DOE's cost target of $\frac{1}{kg-H_2}$;
- Enhance DEI by engaging underrepresented groups in the project; ٠
- Create potential business opportunities in concentrated solar power industries for companies such as Saint-Gobain and Heliogen;

HydroGEN: Advanced Water Splitting Materials

DEI Activities and Milestones

Task (T) and Milestone (M) T1.0 SG Annual Open House for Boston High School Students		Leader(s)		YE	AR-1			YE	AR-2		YEAR-3			
		Leader(5)	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
		Dr. Qian & Dr. Pietras												
M1.1	Host 5-10 students for onsite visit to SG with PIs													
M1.2	Host 5-10 students for onsite visit to SG with PIs													
M1.3	Host 5-10 students for onsite visit to SG with PIs													
T2.0 SG Annual Summer Intership Program		Dr. Qian & Dr. Pietras												
M2.1	Recruit at least 1 intern to participate in this project													
M2.2	In person seminar by Dr. Henry													
M2.3	Virtual seminar by Dr. Haile													
M2.4	Recruit at least 1 intern to participate in this project													
M2.5	In person seminar by Dr. Henry													
M2.6	Virtual seminar by Dr. Haile													
M2.7	Recruit at least 1 intern to participate in this project													
M2.8	In person seminar by Dr. Henry													
M2.9	Virtual seminar by Dr. Haile													
T3.0 Haile	e Undergraduate Seminar	Dr. Haile												
M3.1	Deliver research senimar to undergraduates in at least one other institution													
M3.2	Deliver research senimar to undergraduates in at least one other institution													
M3.3	Deliver research senimar to undergraduates in at least one other institution													
T4.0 MIT Lab Tour for K-12 Students		Dr. Henry & Dr. Ghoniem												
M4.1	Host 10-15 K-12 students to visit labs at MIT													
M4.2	Host 10-15 K-12 students to visit labs at MIT													
M4.3	Host 10-15 K-12 students to visit labs at MIT													

- SG recruits summer intern & hosts local students for site visit;
- SG invites co-PIs to give research seminar for visiting students;
- NU holds research seminar to educate undergraduates;
- MIT arranges lab tours for K-12 students & instruct them with general STCH knowledge
- Active recruitment at all stages from underrepresented groups

HydroGEN: Advanced Water Splitting Materials

Scheduled Node Support Tasks

DOE HydroGEN Node Tasks & Responsible Team						YEAR-1				YEA	R-2		YEAR-3			
Task No.	Task Description Lead Team & Node P		eam & Node PI(s)	Funding	Q1	Q2	Q3	Q4	Q5	Q 6	Q7	Q8	Q9	Q10	Q11	Q12
node 1.0	Perovskite Oxide Water Splitting Surface Reaction Rate Calculations	LLNL	Tae Wook Heo Brandon Wood	\$120,000				M1								
node 2.0	Technoeconomic Analysis of LCOH by Reactor Train System	NREL	Zhiwen Ma	\$100,000				M2								
node 3.0	Validation of Thin Film Approach & X-ray Analysis of Compositionally Graded Film	NREL	Andriy Zakutayev	\$130,000								М3				
node 4.0	High-temperature Component Testing of Reactor Train System	SNL	Ken Armijo	\$135,000								M5				
node 5.0	Validation of Material's STCH Cycling Performance	SNL	Anthony McDaniel	\$100,000												М6
node 6.0	Reactor Train System On-sun Testing for Solar Fuels Production	SNL	Ken Armijo	\$165,000												М7

• Identify 6 node supporting tasks including \$350k on materials research & \$400k on reactor development/testing;

• Cross-node communication and collaboration are critical to ensure success of our 'ambitious' project goal;

Questions?