HyMARC Overview

Mark Allendorf Senior Scientist Sandia National Laboratories Livermore, CA

Lawrence Livermore

aboratory

National

This presentation does not contain any proprietary, confidential, or otherwise restricted information

SAND2023-09832C

Hydrogen storage represents a thermodynamic "Goldilocks Challenge"

Design of hydrogen storage materials faces numerous tradeoffs

- Thermodynamics vs. useable capacity
- Thermodynamics vs. kinetics
- Physical properties (e.g. melting point or viscosity) vs. capacity

ENERGY Renergy Efficiency ENERGY Renergyable Energy

The application space for hydrogen energy carriers has expanded dramatically

nature chemistry

Received: 14 October 2020

Accepted: 2 September 2022

Published online: 27 October 2022

Perspective

https://doi.org/10.1038/s41557-022-01056-2 💌

Challenges to developing materials for the transport and storage of hydrogen

Tom Autrey
²

Mark D. Allendorf @12, Vitalie Stavila @1, Jonathan L. Snider1,

Matthew Witman 1, Mark E. Bowden 1², Kriston Brooks², Ba L. Tran² and

Examples of use cases for hydrogen carriers, illustrating a range of power, energy, hydrogen usage and storage requirements

		D (Anab		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Use case*	Relative size	Power (MW) [®]	Energy (MWh)°	H_2 usage (kg d ⁻¹) ^d	Use duration (d) ^e	H_2 rate (kg h ⁻¹)
Mobile applications						
Light-duty vehicle	Small	0.08	0.078	0.76	365	0.56
Long-haul truck	Medium	0.24	0.8	60	365	5.4
Refuel medium-duty fleet	Large	0.83	NA	1,000	365	41.7
High-speed ferry	Very large	4.9	17	2,000	365	210
Regional fuel depot	Extreme	41.7	NA	50,000	365	2,083
Stationary applications						
Telecom backup	Small	0.003	0.2	3.5	3	0.14
Seasonal microgrid storage	Medium	0.027	85	39	130	1.6
International shipping	Large	0.48	N/A	575	365	24
Hospital backup	Large	0.59	99	709	7	29
Data centre backup	Very large	20	1,440	30,000	3	1,250
Grid-scale long-duration storage	Extreme	100	1,000	120,000	0.42	5,000
Steel mill DRI	Extreme	250	NA	300,000	365	12,500

Allendorf, Stavila, et al. Nature Chemistry 2022 DOI 10.1038/s41557-022-01056-2

How do the energy densities of SOTA battery technology compare with metal hydrides?

Allendorf, Stavila et al. Nature Chemistry, DOI 10.1038/s41557-022-01056-2

Targets of the battery community are 1 kWh/L and 1 kWh/kg, which are lower than many main-group metal hydrides

· HAN

^{*} J. Phys. Chem. Lett. 2010, 1, 14, 2193–2203 https://pubs.acs.org/doi/10.1021/jz1005384

^{**} https://physicsworld.com/a/lithium-ion-batteries-break-energy-density-record/

The hydrogen economy: it's not just production. Transport and storage are critical

Efficient transport of hydrogen from point of production to fueling station is not possible using compressed gas:

- 1 kg H₂ = 1 gallon of gasoline (~4 L)
- Steel tubes: 280 kg per tanker
- Composite tanks: 550 kg of hydrogen at 250 bar
- Typical gas station stores 75,000 –
 230,000 L (20,000 60,000 gallons)

Processes accompanying hydrogen storage reactions in metal hydrides

Hydrogen Materials Advanced Research Consortium (HyMARC): accelerating materials discovery \rightarrow scaleup \rightarrow demonstration of materials-based storage

https://www.hymarc.org/

Systems analysis + material synthesis & characterization = "Co-Design"

TBD

Storage system modeling tool workflow

Example: what's needed to make a nanoscale metal hydride practical? Reduce the temperature for H₂ desorption to \leq 250 °C

- → Enables aluminum fuel tank instead of stainless steel
- \rightarrow Reduces number of cooling tubes and H₂ consumption by burner

HyMARC is dramatically accelerating material discovery and optimization using data science and machine learning methods

Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021

Translating laboratory discoveries to higher TRL: High-pressure hydride scale-up reactor

<u>Objective</u>: bring on-line the GM Hydride Station, a multi-bed hydride PCT reactor designed and fabricated for the GM hydride tank project, to enable measurements and testing to increase the TRL of HyMARCdeveloped storage materials.

Capabilities:

- 2 separate hydride beds
- H₂ source volumes up to 8 L at 2500 psi (167 bar)
- Pressures up to 230 bar feasible with compressor
- 1000 W heating units
- Calibrated desorption volumes up to 40 L

Systems analysis conducted in concert with material development defines pathway to successful materials

K. P. Brooks et al. Int. J. Hydrogen Ener. 45 (2020) 24917-24927

Required model inputs:

Intrinsic material properties:

- Composition (hydride loading)
- **Reaction thermodynamics**
- H₂ desorption kinetics
- Thermal conductivity

System design parameters:

- Tank material
- Bed density (hydride packing density)
- Max. operating T, P

Moving beyond bulk: Nanoscale Hydrides

Kim, K. C. Nanotech. 2009, 20, 204001

- Improved thermodynamics and accelerated kinetics
 - Increased surface energy \rightarrow greater thermodynamic driving force
 - Reduced diffusion lengths \rightarrow decreased/eliminated mass transport limitations
 - Host-guest charge transfer \rightarrow weakened M-H bonds
- Stabilizes hydride nanoclusters against agglomeration
- Pathway for heat management

A. Schneeman et al. Chem. Rev. 2018, 118, 10775-10839

Temperature-programmed H₂ desorption of nano-NaAlH₄ in a MOF host

• Highly improved kinetics vs bulk

- T_{onset} = ~30 °C

- Capacity almost 2X bulk at 200 °C
- Ti does not affect H₂ desorption kinetics
 - → Difference almost entirely due to nanoscale and template effects
 - \rightarrow This is very different from bulk NaAlH₄
- Initial desorption = 4.5 wt%

→ Suggests nearly complete dissociation to NaH + Al + H_2

wt% H₂

5

4.5

4

3.5

0

0

1

Ti (mol %)	H ₂ capacity (% M/M)	$E_{\rm a}(d)$ (kJ mol ⁻¹)	ref
0 (bulk)	5.12	118.1	26
2% (bulk)	4.25	79.5	26
0 (10 nm pores)		58	3
0 (4 nm)		46	4
0 (1 nm)		53.3	7
3 (≤1.2 nm)	4.2	57.4	this work

3

4

time, hours

5

2

V. Stavila et al. ACS Nano 2012, 6, 9807

T. °C

200

175

150

125

100

75

50

25

8

NaAlH4(TiCl4)@MOF-74

7

6

o NaAlH4@MOF-74

△ Bulk NaAlH4

-- Temperature

HyMARC partnerships with DOE/Office of Science user facilities link foundational science with application- driven materials discovery

Example: Advanced Light Source at LBNL

- Dedicated time on 3 beamlines (XAS and STXM); HyMARC is the only EERE-funded project to be granted this status
- 22 publications in high-impact journals, including JACS, Nat. Mater., Adv. Mater., Nat. Commun.
- Installed new high-pressure/high-temperature cell for operando observation of storage material chemistry
- ALS measurements generated new structure-property relationships:
 - Discovery of reversible metastable metal hydrides
 - Inverse core-shell mechanism of H₂ release by the lithium amide storage system (LiNH₂+2LiH)
 - Single-site catalysts for reversible dihydrogenation of Liquid Organic Hydrogen Carriers
- Renewal proposal extending AP for 3 years approved June 2023

HyMARC-designed high-pressure gas flow cell for probing storage materials using X-ray absorption spectroscopy

<u>Paradigm shift</u>: STXM composition maps show H₂ release from the surface is rate-limiting

Hydrogenation and dehydrogenation steps for complex metal hydrides are conducted at different temperatures and pressures, which can lead to different rate-limiting steps.

Scanning Transmission X-ray Microscopy (STXM)

Absorption:

Proceeds as predicted previously

Dehydrogenation:

 Inverted core-shell → opposite microstructure from phase-field/Wulff prediction

Possible explanations:

- Surface energies alter thermo, favoring H-rich surfaces
- Surface dehydrogenation kinetics are slow
- Nucleation kinetics favor Li₃N in interior due to lower interface energies

Nanoscale metal hydrides have faster H₂ uptake and release

Simulation of desorption over 2.5x10⁴ sec (~ 7 hours)

Key results

- → Bulk material: unusable due to slow kinetics
- → Nanoscale material produces 55 bar H₂ at 250 °C
- → Porous C host accelerates H₂ release throughout the tank due to faster heat transport

Design Parameters	Bulk-Li₃N	KH-6nm- Li ₃ N
Reversible cap. (theory) wt%	8.2	5.4
Thermal cond., W m ⁻¹ K ⁻¹	1.0	9.6
Density of hydride bed, kg m ⁻³	710	760
Total system mass, kg	312	252
Total hydride mass, kg	112	116
Tank outer diameter, m	0.46	0.45
Tank length, m	2.21	2.19
System volume, m ³	0.256	0.227
% 2025 Gravimetric Target	33	40
% 2025 Volumetric Target	55	62

Disruptive strategies are needed to overcome scientific and technical barriers to accelerated materials discovery: Metastable Metal Hydrides

250

Calculated van't Hoff plots for several stable and metastable hydrides

500

2

333

Ca(AIH₄)₂

Mg(AIH₄)₂

 $\alpha - AIH_3$

Li₃AIH₆

stableunstable

NaAlH₄

3

Graetz & Reilly Scripta Mater. 56 (2007), 835

Nanoconfinement of alane (AlH₃) in Covalent Triazine Frameworks (CTF)

Bulk rehydrogenation:

- 330 °C/49000 bar (4.9 GPa) (Saitoh et al. 2008)
- Ab initio: ∆G < 0 above 7000 bar at 27 °C (Graetz et al. 2006)
- → Nanoscaling reduces equilibrium rehydrogenation pressure by 10X 70X

V. Stavila et al. Angew. Chem. Int. Ed. doi.org/10.1002/anie.202107507

Rehydrogenation at 60 $^{\circ}$ C, 700 bar H₂

Sieverts data for H₂ desorption

	AlH₃@CTF-bipy	AlH₃@CTF-bipl	h
Cycle 1	1.52 wt%	1.00 wt%	
Cycle 2	0.65 wt%	0 wt%	
Cycle 3	0.58 wt%		
Cycle 4	0.57 wt%		/

- Hydrogen storage is an <u>essential</u> component of a renewable energy economy
- HyMARC is addressing the critical problems blocking the translation of materials discovery to pilot-scale deployment
- HyMARC is discovery science \rightarrow system modeling \rightarrow TEA \rightarrow scale up
- Co-design of materials is critical to developing successful materials for complex, but highly constrained, applications

Acknowledgements

- Dr. Vitalie Stavila
- Dr. Jon Snider
- Dr. Josh Sugar
- Dr. Lennie Klebanoff
- Dr. Farid El Gabaly

Pacific Northwest National Lab

- Dr. Andy Lipton
- Dr. Kriston Brooks
- Dr. Tom Autrey
- Dr. Mark Bowden

Technical University Dresden

• Dr. Andreas Schneemann

Lawrence Berkeley National Lab

- Dr. Chaochao Dun
- Dr. Jinghua Guo
- Dr. Yi-Sheng Liu
- Dr. David Prendergast
- Dr. Ji Su
- Dr. Jeff Urban

Lawrence Livermore National Lab

- Dr. Brandon Wood
- Dr. Maxwell Marple
- Dr. Shinyoung Kang
- Dr. Sichi Li

National

Laboratories

- Dr. Liwen Wan
- Dr. Tae-Wook Heo

National Renewable Energy Laboratory

• Dr. Tom Gennett

SLAC National Accelerator Laboratory

Dr. Nicholas Strange

KAIST

- Prof. Eun Seon Cho
- YongJun Cho

Max-Planck-Institut Festkoerperforschung

- Prof. Bettina Lotsch
- Dr. Hendrik Schlomberg

Seoul National University

- Dr. Sungsu Kang
- Dr. Min-ho Kang
- Dr. Hayoung Park
- Dr. Jungwon Park

rthwest LABORATORY

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SoCalGas

We are grateful for the financial support of EERE/HFTO and for technical and programmatic guidance from Dr. Zeric Hulvey and Dr. Ned Stetson

THANK YOU