Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop

Breakout Session Summaries Cross Cutting Topics

September 21-22, 2023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Cross Cutting Breakout Sessions

Session ID	Торіс	Lead	Note Taker
C4-A	H2 Storage: Benchmarking & Validation Experience	Phil Parilla (NREL)	Karl Gross (H2 Technology Consulting)
C4-B	HTE & STCH: Common Materials	David Ginley (NREL)	Sean Bishop (SNL)
C4-C	LTE & PEC: Common Materials	Huyen Dinh (NREL)	Sol A Lee (Caltech)

Session Summary

 Cross-Cutting Discussion Topics: Presenter: Phil Parilla: NREL – Expert in Materials Hydrogen Storage Measurement Best Practices and Benchmarking. Goal: Share extensive Benchmarking experience. Topics: Protocols, Metrics, & Recommendations Validation Testing Inter-laboratory Comparisons/ and Round Robin Testing Lessons Learned 	 Consensus and Dissenting Opinions: 1) 1st measurement should be a "Blank" sample. Results that are not null point to calibration or procedural problem. Long cycle-life important for commercial success. 2) Need to ensure proper funding level to support validation efforts. Prioritize validations to be performed. 3) Test multiple identical samples to determine statistical error. For some procedures, this may not be practical. Single provider of calibration standard material/components and results. 4) Identify errors that are cell/system specific.
 Key Take-Aways 1) 1st measurement: a "Blank". Non-zero results are a problem. Protocols should include "Check-off List" and require details of Operating (T-control) & Environmental conditions (room T, P, altitude). 2) Expert Labs needed to: a)validate result, b)to provide others standards/data for self calibration/validation, c)make protocols universal not company specific. Validation requires time, effort, and funding. 	 Action Items 1. Propose Level & Provider of Validation testing. 2. Develop Validation Testing goals. 3. Identify standard materials and components for calibration/validation and identify repository. 4. Prioritize validations, round-robin testing & inter-lab efforts.

- 5. Evaluate best way to provide community with "Lessons Learned" information.
- 6. Assess the level of funding needed to achieve these efforts.
- and funding.
- 3) RR testing requires time, effort, and wide participation. Promote, incentivize, expertise
- 4) Lessons Learned: include in protocols or open contribution information site.

Session Summary

Summary of discussion

 This session looked for areas of commonality between STCH and HTE materials. The session was attended by 21 people.

Consensus and/or dissenting opinions

• People felt that cross fertilization could accelerate development in both areas.

Key Take-Aways

The two areas of the most overlap:

- Materials synthesis where in general both systems use high temperature oxides.
- The critical nature of the defect chemistry in both systems and the need for advanced characterization to understand defect formation, equilibrium and relationships to phase and materials stability. This can be supported by common theory development.

Action Items

- Consider a round robin of materials between various STCH and HTE groups.
- Develop a student exchange between research groups in the two different areas.

Session Summary

catalyst degradation), durability, and cost.

cost (e.g., no porous transport layer).

•

•

Possible to adapt some of the maintenance and

regeneration schemes being developed in PEC to LTE. For PEC to be competitive, the design must be low

 Summary of discussion Discussed components, performance, and durability testing (operation condition, etc.), cost, and design criteria of LTE & PEC PEC devices have shifted to integrated PV-EC designs (without wires) PEC community can learn from LTE community: material & component scale up, reactor design. There's an opportunity to use materials and components (e.g., bipolar membrane) which were found to be unsuitable for high current operation (LTE) but may work well for PEC operating at low current densities. 	 Consensus and/or dissenting opinions Lack of understanding of degradation mechanism for PEC & LTE. PEC device has more interfaces, resulting in more complexity and points of failure, so it is hard to correlate performance loss to component failures and degradation mechanisms under different conditions. Different criteria for PEC (e.g., operate at lower current density, transparent material to absorb light) Priority to develop PEC system: durability vs. cost Cost: AEMWE-material costs can be lower, but it may still be hard to compete if it cannot operate at high current density (multiple stacks and systems increases balance of plant & capital cost) 	
 Key Take-Aways For both PEC and LTE, elucidating the degradation mechanism, developing validating durability testing protocol(s) and accelerating stress test(s) are needed. Should consider the effects of operating conditions on PEC performance (trade-off between high 	 Action Items Develop metrics for PEC durability testing and methods for stable device operation (coatings, regeneration, intermittent operation, reapplying catalysts, etc.) 	
pressure/high current densities, gas cross-over, and	 Develop durability and accelerated stress test 	

 Develop durability and accelerated stress test protocols

Session Attendee List

Session ID: C4-C Title: LTE & PEC: Common Materials

Nomo		Name	Affiliation
Name	Affiliation	James Vickers	DOE
Faiz Mandani	Rice	Joel Ager	LBNL
Ayush Agrawal	Rice	Rito Yanagi	Yale
Adam Nielander	SLAC	CX Xiang	Caltech
Todd Deutsch	NREL	Melissa Kreider	NREL
Joel Haber	Caltech	Emily Volk	NREL
Sarah Park	LANL	Devan Solanki	Yale
Su Min Ahn	LANL	Mohamed Abdelrahman	Moleaer Inc
Noor UI Hassan	NREL	Bilal Iskandarani	University of California , Irvine
Ahmed Farghaly	ANL	Nadia E. Tolouei	University of California , Irvine
Meghan Vander Woude	Chemours	Joel Ager	LBNL
Chris Topping	Tetramer	George Roberts	Nel Hydrogen
Chris Capuano	Nel Hydrogen	Luigi Osmieri	LANL
Zhaoning Song	Toledo	Lily Shiau	Caltech
Adam weber	LBNL	Sol A Lee	Caltech
Johan Buurma	TNO	Bryan Pivovar	NREL
Issac Holmes-Gentle	EPFL	Andrew Park	Chemours
Tadashi Ogitsu		Balsu Lakshmanan	Versogen
<u> </u>		Huyen Dinh	NREL
Ai-Lin Chan	NREL	Isaac Holmes-Gentle	EPFL