Solid Oxide Technology Role in Energy Applications

Benchmarking Water Splitting Technologies Workshop

21September 23

S. Elangovan and Team

Company Background

N. Salt Lake, Utah R&D/Manufacturing - Founded 2017 Team: SOFC/SOEC for 35 years

Aerospace and Commercial Terrestrial Applications

- OxEon's core technology was flight proven through NASA aboard the Mars Perseverance Rover
- Department of Energy for projects in sustainable fuel production for terrestrial applications
- NASA for continued development for space applications
- Department of Defense funding for programs power and fuels production
- Commercial contracts for fuel, power and electrolysis systems

Solid Oxide Technology for Space Exploration

NASA funded flight program

- Only flight qualified SOEC stack in history
- Only TRL9 SOEC device in history
- First production of oxygen from the Mars Atmosphere

MOXIE SOXE TEAM:

- MIT: Program Prime and Science Team Lead
- JPL: Systems integration
- **OxEon:** Stack development and production
 - TRL3 to 6 in 18 months!!
 - Hermetically sealed, ruggedized stack capable of withstanding launch, entry, descent and landing

Projects with NASA for Next Generation

- Mars: Oxygen and Methane Production from co-electrolysis
- Lunar: Liquid Propellants for LH₂/Lo_x-Fueled Cislunar Transport
- SBIR: Cathode Development for Redox Tolerance

OXEON ENERGY, LLC

3

1111

Flight Test Success - First Ever ISRU Demonstration

- 16 total operation cycles completed on Mars at time of presentation (Mission Life Success!)
- >99.6% Oxygen purity
- Operations have spanned the climactic extremes of the Mars' year.
- All cycles performed as predicted: lab & models
- The MOXIE Mission continues through Sept 2023
- Basis for a Lunar and a Martian ISRU

O/ CO. Out

Image credit NASA/JPL-Caltech

2023 DOE Benchmarking

OXEON ENERGY, LLC

OxEon Focus

Enabling Cross-Sector Energy Conversion

SUSTAINABLE AVIATION FUEL | IN SITU RESOURCE UTILIZATION PROPELLANTS | BIOGAS PROCESSING

SOXE For Space

- MOXIE: Flight demonstration aboard the Mars Perseverance Rover producing O₂ and CO/CO₂ from the Mars ambient air (Dry CO₂ Electrolysis)
- NextSTEP: Oxygen and methane production from co-electrolysis for full-scale Martian Mission (Co-Electrolysis)
- **Tipping Point**: Liquid propellant production for LH₂ /LO_x cislunar transport (Steam electrolysis)
- **SOFC**: Same stack run in reverse as fuel cell for power production

Lunar Demonstration System: Program Objectives

Lunar ice processing demonstration unit sponsored by a Tipping Point award to OxEon and Mines through NASA's Moon to Mars Technologies initiative

Objectives

Demonstrate high temperature SOXE propellant production from H₂O

Thermally integrated BOP

System architecture optimization and technoeconomic analysis

Program Accomplishments

Integrated breadboard system tested at relevant conditions

Moved technology from a TRL 4 to TRL 5

TEA indicates economically viable propellant production

NASA Contract: 80LARC20C0001

2023 DOE Benchmarking

Program Accomplishments (Testing Completed 30 June 2022)

Demonstrated system performance metrics:

- H₂ production at ~2.8 kg/day (stack current = 49 A, H₂O conversion = 99%)
 - Exceeded performance threshold of 1.5 kg/day by nearly 90%!
- \circ O₂ produced at pressures up to **3.6 bara**
 - o Exceeded target threshold of 1 bara
 - O₂ production to 22.8 kg/day, nominal at peak current
- System specific power average 46.5 kWh/kg H₂ for 2 hours (excluding heat tracing steam lines)
- Demonstrated an **ISRU stack scale-up of 33x** over MOXIE stack

NASA Contract: 80LARC20C0001

OXEON ENERGY, LLC

Martian Demonstration System: Program Objectives

Martian ISRU demonstration system sponsored by a NASA Next STEP award and tested at Jet Propulsion Laboratory

Cathode Challenge for MOXIE: Oxidation in dry CO₂

- Early MOXIE Test Stack:
 - 15 operational cycles full thermal cycle with 120 min operation on dry CO₂
 - Dry CO2 \rightarrow O2 production ~12% of initial

Dramatic degradation resulted from progressive oxidation front

Oxidation of Ni to NiO causes ~24% vol expansion, and in this case, irreversible damage to the electrode & current collector

MOXIE implemented recycle of produced CO to prevent cathode oxidation

OXEON ENERGY, LLC

2023 DOE senchmarking 10

Cathode Challenge for MOXIE: Oxidation in dry CO₂

- 52-Cell Stack: kW class CO₂ Electrolysis
- Full Recovery after overnight oxidation in CO2
- No difference in performance with and without H2 in the feed gas

NASA SBIR contract: 80NSSC19C0114 NASA Contract 80HQTR19C0006

Ongoing Other Activities

- Post MOXIE Funding supporting Lunar and Martian applications
- Materials Development for redox tolerance, performance stability
 - Redox tolerance for CO2 electrolysis

Air Force Research Laboratory:

- STTR Phase II for eVTOL application (ammonia/air)
- Fuel Cell for Space Vehicles (unconventional fuel and oxidant)

Naval Research Laboratory:

- On ship jet fuel production from sea water (CO₂ capture + $H_2 \rightarrow$ JP fuel)

Department of Energy

- Electrolysis demonstration projects with INL Multiple solid oxide fuel cell and electrolysis development programs
- Redox tolerance, pressurized operation
- Full technology suite system for conversion of biomass CO2 to fuel

Commercial:

- Microgrid applications
- Chemical weapons destruction

OXEON ENERGY, LLC

Ongoing Advances in SOEC Technology

2023 DOE HTWS Benchmarking Workshop

Air Electrode Supported Button Cell Testing (Lightweight Focus)

AES Button cell for Weight Reduction (eVTOL); ammonia fuel

- Screen printed anode
- Infiltrated cathode barrier layer + LSCF
- ~70 µm ScSZ electrolyte

Fuel Feed (sccm)	Current Density (mA/cm ²)	ASR (Ω∙cm²)	Ro (Ω·cm²)	Rp (Ω·cm²)
30 H ₂ /30 N ₂	890	0.29	0.14	0.14
45 H ₂ /15 N ₂	1040	0.25	0.14	0.11
60 NH ₃	1100	0.25	0.14	0.11
45 H ₂ /15 N ₂	845	0.34	0.22	0.12

Gamry potentiostat measurements taken at 0.7 V

OXEON ENERGY, LLC

Redox Cycling

6-cell stack STK-82 SOEC Testing, 800 C

Thermal Cycling

thermal cycling demonstrates robustness of the stack and

DOE-NETL Contract: DE-FE0032105

Additional Reversibility Testing + Final Redox

STK-82 SOEC/ SOFC Testing, 800 C

Higher degradation after 5 thermal cycles Reversibility testing

showed stability

Final Redox – back to initial performance

DOE-NETL Contract: DE-FE0032105

Pressurized lesting								
GC Results (%)								
Pressure Condition	2 barg O fu	2, 2 barg el	2.2 barg O fue	2, 2 barg el	2 barg O2, fue	2.5 barg el	2 barg barg	02, 3 fuel
GC Туре	Oxygen	Fuel	Oxygen	Fuel	Oxygen	Fuel	Oxyge n	Fuel
H2	-	85.81	-	84.84	-	84.08	0.010	85.40
02	99.84	0.160	98.58	0.131	99.46	0.149	99.58	0.23
N2	0.161	14.03	1.39	15.03	0.54	15.77	0.410	14.36

- Pressurized H2 (3 barg) and O2 (up to 3 barg) production (stack 83)
- 1 bar differential pressure achieved
- External to stack is ambient (no pressure chamber)

OXEON ENERGY, LLC

DOE-NETL Contract: DE-FE0032105

rSOC Program Overview

Ongoing system design and validation with commercial and DOE partners

Farm Microgrid

Electrolysis:

- Renewable energy supports generation of H2
- Production rate at 20kW
- Initial H2 storage capacity 100kg at 350 bar Fuel Cell:
- On-site H2 storage to generate electricity at night
- Production rate at 10kW

Idaho National Laboratory (Prime)

Electrolysis:

- Steam electrolysis production rate at 30kW Fuel Cell:
- Production rate at 20kW

OXEON ENERGY, LLC

2023 DOE Benchmarking 19

Fischer Tropsch Overview

Syngas (CO + H₂)

Fischer-Tropsch produces liquid hydrocarbon fuels from syngas

(2n+1) H_2 + n CO \rightarrow C_n $H_{(2n+2)}$ + n H_2 O

 $H_2 + CO \rightarrow liquid hydrocarbon fuels$

Catalysts (Fe, Co) and process conditions facilitate the reaction and determine the hydrocarbon product.

Advantages

- Biogas / biomass conversion produces **sustainable transportation fuels**
- Modular design reduces capital costs to start up and expand system ET is an established technology that Transportation
- FT is an established technology that produces syncrude, which can be converted to standard fuels with upgrading.

Fuels Jet Fuel Diesel Fuel Lubricant wax

Fischer Tropsch - Program Overview

- Engineering-scale demonstration for production of liquid hydrocarbon fuels using both methane and carbon dioxide generated by a food waste digester
- Three key elements:
 - Solid Oxide Electrolysis Cell (SOEC) Converts steam and CO₂ to syngas
 - Plasma Reformer Syngas production from methane with steam and water
 - Fischer-Tropsch (FT) Reactor Liquid fuel production from syngas

DOE-BETO Contract: DE-EE0008917

Fischer Tropsch - Subsystem Verification Test Results

Critoria	Target	Overall Averages 10/21-10/29 and 10/30-11/3		Overall Averages	2020 Results	
Cinterna				10/21-11/3		
CO Conversion	>80%	84.2%	86.1%	84.9%	92%	
H ₂ Conversion	>80%	93.4%	93.8%	93.6%	92%	
CO Selectivity to C5+	>76%	80.2%	75.9%	78.6%	73.2%	
Overall CO to C5+ (Conversion*Selectivity)	>67%	67.4%	65.4%	66.7%	67.2%	
Mass balance closure	>92% on C		95.8%		98.80%	
Product Distribution C _n peak	>C9	SimDis product peak at C9-C10		C9-C10	C8-C9	

Thank you elango@OxEonEnergy.com

