

H2NEW: Hydrogen (<u>H2</u>) from <u>N</u>ext-generation <u>Electrolyzers of Water Overview</u>

Director: Bryan Pivovar, National Renewable Energy Laboratory (NREL) Deputy Director: Richard Boardman, Idaho National Laboratory (INL)

Date: 9/21/2023

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Goals

<u>Goal</u>: H2NEW will address components, materials integration, and manufacturing R&D to enable manufacturable electrolyzers that meet required cost, durability, and performance targets, simultaneously, in order to enable \$2/kg hydrogen (by 2026 on way to H2 Shot target, \$1/kg by 2031).

H2NEW has a clear target of establishing and utilizing experimental, analytical, and modeling tools needed to provide the scientific understanding of electrolysis cell performance, cost, and durability tradeoffs of electrolysis systems under predicted future operating modes

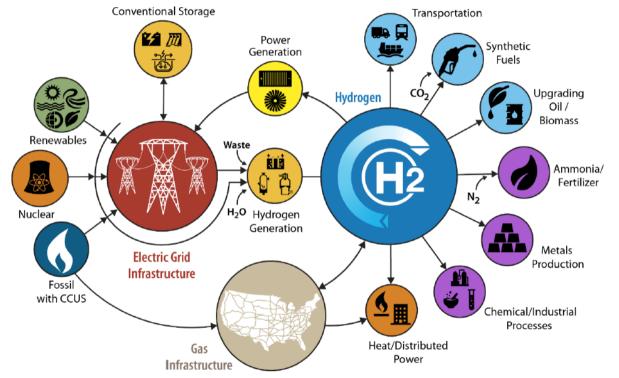
Overview

Timeline and Budget

- Start date: October 1, 2020
- FY21 DOE funding: \$10M (75% PEM, 25% O-SOEC)
- FY22 DOE funding: \$10M (75% PEM, 25% O-SOEC)
- FY23 DOE funding: \$28M (45% PEM, 20% LA, 35% O-SOEC)

Detailed AMR posters on each task:

 <u>https://www.hydrogen.energy.gov/amr-presentation-</u> <u>database.html</u> (search H2NEW)

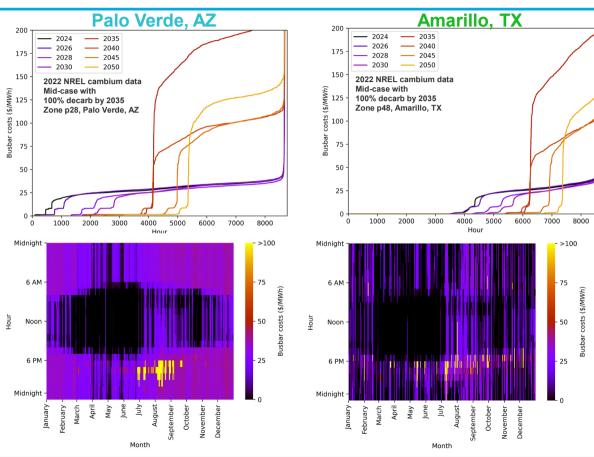


Colorado School of Mines

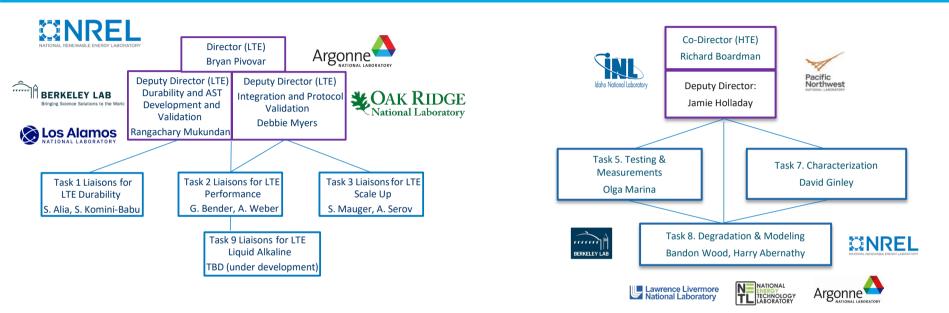
* Expansion to include additional academic and industrial partners through FOA projects currently under review

Potential Impact – H2NEW connection to H2@Scale

- Making, storing, moving and using H2 more efficiently are the main H2@Scale pillars and all are needed.
- Making H2 is the inherently obvious, first step to spur the wide-ranging benefits of the H2@Scale vision.
- Electrolysis has most competitive economics and balances increasing renewable generation challenges.

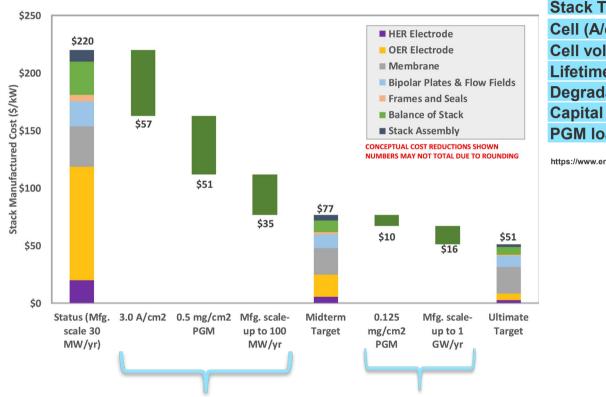

Illustrative example, not comprehensive https://www.energy.gov/eere/fuelcells/h2-scale

Accomplishment: Analysis of projected marginal electricity costs by location



- We have expanded our analyses to explore "projected" electricity costs.
- We have chosen select locations to highlight the impact of grid mixes.
- Price structures directly influence optimal operating strategies.
- Explores the impact of "chasing" cheap electricity.
- Ignores the impact that electrolysis can have on electricity price structure.

Consortium Structure

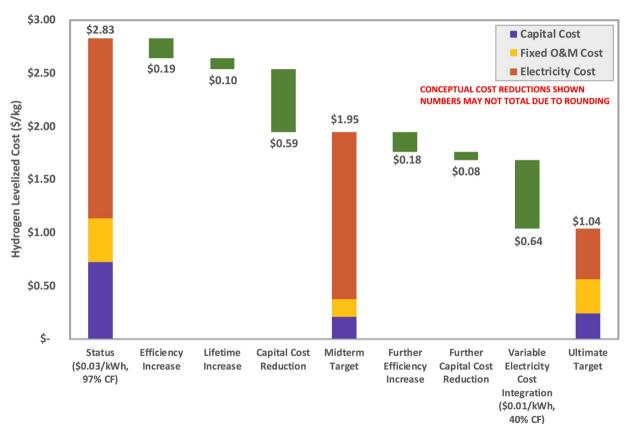


- Well developed cross-lab structures for PEM and O-SOEC
- Liquid Alkaline efforts under development but will feed into LTE management structure

Potential Impact: Stack Costs (PEM)

Stack Targets	Status	2026	Ultimate
Cell (A/cm ²)	2.0	3.0	3.0
Cell voltage (V)	1.9	1.8	1.6
Lifetime (khr)	40	80	80
Degradation (mV/khr)	4.8	2.3	2.0
Capital Cost (\$/kW)	450	100	50
PGM loading (mg/cm ²)	3	0.5	0.125

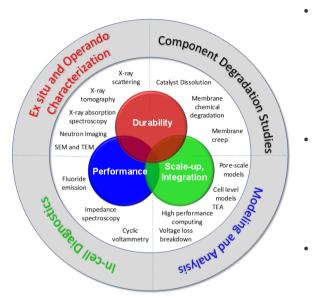
https://www.energy.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysis


These 3 areas

- 1. Increased efficiency/current density
- 2. Decreased PGM loading
- 3. Scale-up

Are the strongest levers for addressing stack costs and primary focus of H2NEW.

Potential Impact: Hydrogen Levelized Cost

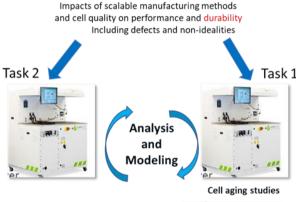

Select pathway to \$2/kg and \$1/kg identified.

Much of HLC gains possible through greatly decreasing capital costs and enabling lower cost electricity through variable operation.

These advances can't come with compromised durability or efficiency, so all three areas are linked.

Approach: H2NEW Cross-technology Methodology

H2NEW U.S. DEPARTMENT OF ENERGY


- Durability
 - Establish fundamental degradation mechanisms
 - Develop accelerated stress tests
 - Determine cost, performance, durability tradeoffs
 - Develop mitigation
- Performance
 - Benchmark performance
 - Novel diagnostic development and application
 - Cell level models and loss characterization
- Scale-up
 - Transition to mass manufacturing
 - Correlate processing with performance and durability
 - Guide efforts with systems and technoeconomic analysis

Lab Scale – Ultrasonic Spray

Task 3

Ex situ characterization

Operando characterization/diagnostics

H2NEW Activities: Low Temperature Electrolysis (LTE)

Accomplishments

- 2023 AMR Select Highlights
 - Task 3c Systems/Technoeconomic Analysis
 - Future electricity markets
 - Turndown ratio impact
 - Task 1 Durability
 - Ir dissolution Potential cycling
 - Establishing degradation baselines
 - Start/Stop Reference Electrodes
 - AST Development
 - Task 2 Performance
 - Benchmarking
 - Pressure effects
 - Test capability development
 - Cell modeling

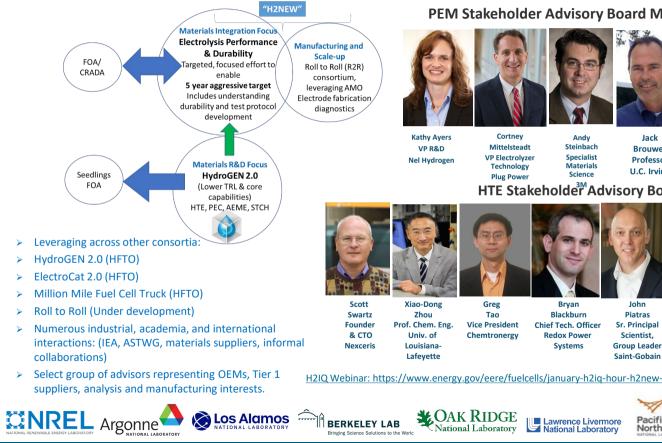
- Task 3 Scale-up
 - Catalyst ink stability
 - R2R catalyst layer durability
- PTL (cross task effort)
 - Novel tunable PTL/MPL development
 - PTL/CL interface optimization
 - Operando characterization of PTLs
- Task 9 Liquid Alkaline
 - Reference system
 - Benchmarking
 - Cell modeling
 - Initial performance testing

https://www.hydrogen.energy.gov/pdfs/review22/p196_pivovar_boardman_2022_o.pdf

H2NEW Activities: High Temperature Electrolysis (HTE)

Richard Boardman, H2NEW Deputy Director, and HTE Lead

Select HTE Highlights


- 2023 AMR Select Highlights
 - Task 5 Testing & Measurements
 - Established Multiple Size Cell Production
 - Achieved excellent production quality control and consistent testing
 - Established Inter-Lab Standardized Testing Protocol and Operating Procedures
 - Inter-Laboratory cell testing is closing on consistent test outcomes
 - Identified Stressors to Accelerate Degradation
 Mechanisms
 - Larger cell test stand with realistic interconnects, coatings, and contacts now under testing
 - Task 6b Data Hub
 - Created Data Hub for H2NEW
 - Roll-out and demonstration, March 2023

- Task 7 Advanced Characterization
 - Cell characterization using standard microscopy and state-of-the-art X-ray and electron transmission microscopy.
 - Validated X-ray attenuation predictions and demonstrated XRD can be used to resolve crystal structures and defects from individual layers of intact cells (XRD, right) with simultaneous compositional analysis (XRF, below)
- Task 8 Degradation Modeling
 - Assessed impact of Ni/YSZ ration, operating conditions, and microstructure on Ni redistribution
 - Demonstrated multiscale framework for predicting penetration into packed GDC
 - Ab initio calculation use to parameterize multiscale models

https://www.hydrogen.energy.gov/pdfs/review22/p196_pivovar_boardman_2022_o.pdf

Collaborations and Coordination

PEM Stakeholder Advisory Board Members

Brouwer Professor U.C. Irvine

Mark Mathias Consultant retired (GM)

Elangovan

VP of Research

OxEon Energy

Liquid Alkaline Stakeholder Advisory Board (under development)

Associate Lab Director Board (in place)

HTE Stakeholde³Advisory Board Members

Tony Hartvigsen Leo Co-Founder Chief Tech. Officer & CEO & Exec. VP OxEon Energy FuelCell Energy

Prof. Materials Sci. & Engineering Northwestern University

Scott

Barnett

H2IQ Webinar: https://www.energy.gov/eere/fuelcells/january-h2iq-hour-h2new-consortium-overview-electrolyzer-development-capabilities-0

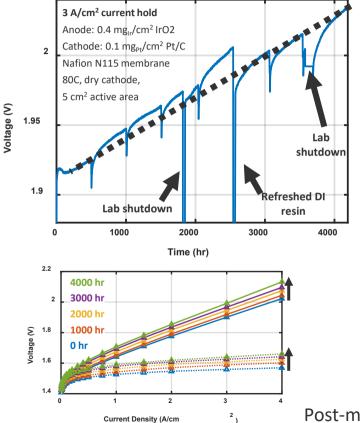
H2NEW: Hvdrogen from Next-generation Electrolyzers of Water

 \geq

 \geq

 $\mathbf{>}$

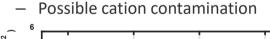
 \geq

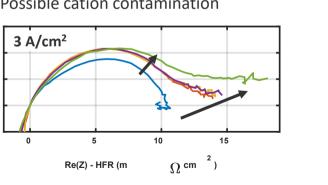

Lab Call Awards – Overlap w/HydroGEN

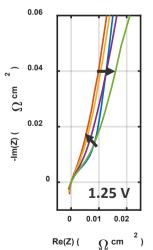
Subtopic	Lead Organization	PI	Project Title	Consortia Requested
AEM – Membrane	Lawrence Livermore National Laboratory	Dr. Johanna Schwartz	Studying-Polymers-On a-Chip (SPOC): Increased alkaline stability in anion exchange membranes	H2NEW, HydroGEN
AEM – Electrodes	Lawrence Berkeley National Laboratory	Dr. Xiong Peng	Hierarchical electrode design for highly efficient and stable anion exchange membrane water electrolyzers	H2NEW, HydroGEN
A – Electrodes	Oak Ridge National Laboratory	Dr. Jun Yang	Hierarchically Structured Advanced Electrodes for Alkaline Water Electrolyzers	H2NEW, ElectroCat
A – Separators	National Renewable Energy Laboratory	Abhishek Roy	Thin highly selective polymer membrane-separators for advanced LAW	H2NEW
D-SOEC	Pacific Northwest National Laboratory	Dr. Olga Marina	Stable High-Performing Oxygen Electrode for SOCE Operating at Lower Temperatures	H2NEW
D-SOEC	SLAC National Accelerator Laboratory	Nicholas Strange	Developing High-Entropy Materials as Superior Alternative Electrodes for Long-lasting Oxide-Conducting Solid Oxide Electrolysis Cells (O-SOECs)	H2NEW
PEM – Membrane	Sandia National Laboratory	Dr. Cy Fujimoto	Advanced Hydrocarbon Based Proton Exchange Membrane Water Electrolyzers	H2NEW, HydroGEN
PEM – Catalyst	Los Alamos National Laboratory	Jacob Spendelow	Ultralow Iridium Catalysts with Controlled Morphology and Speciation	H2NEW
PEM – Catalyst	Argonne National Laboratory	Dr. Ahmed Farghaly	Accelerated Discovery of Metallic Pyrochlores OER Catalysts for PEM Water Electrolyzers: High-Throughput Computational and Experimental Approach	H2NEW
P-SOEC	ldaho National Laboratory	Dr. Dong Ding	High Performance and Robust Proton Conducting Solid Oxide Electrolysis Cells Enabled by New Materials, Interfaces and Fabrication Methods	H2NEW, HydroGEN
P-SOEC	Lawrence Livermore National Laboratory	Dr. Joel Varley	DIRECTED SEARCH FOR STABLE AND CONDUCTIVE ELECTROLYTES FOR NEXT-GENERATION PROTON SOLID OXIDE ELECTROLYSIS CELLS	H2NEW, HydroGEN

Accomplishment: Establishing Relevant Durability Baselines (4000 hour test)

Completed 4,000 hr durability test of FuGeMEA cell:

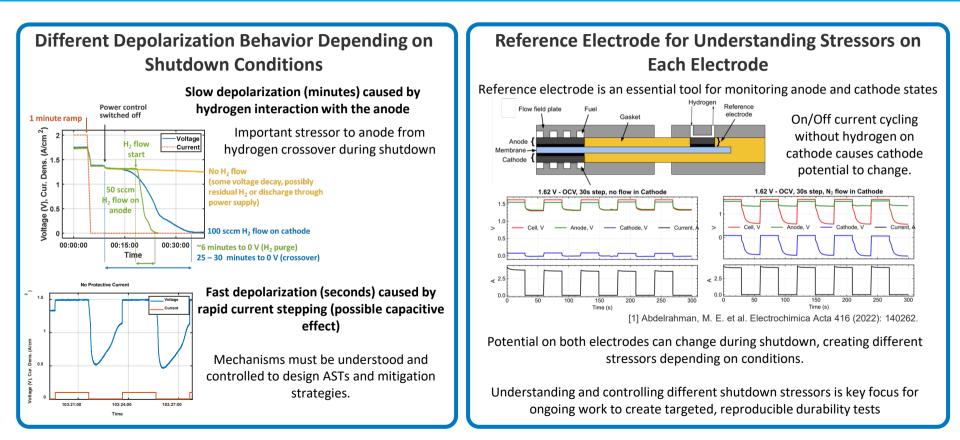

Benchmarking decay rates: ٠


E

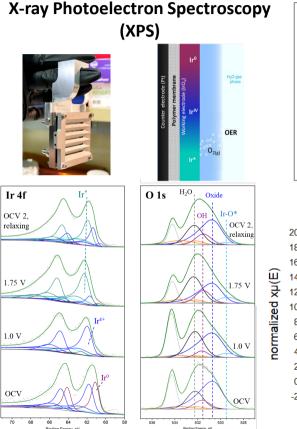

C

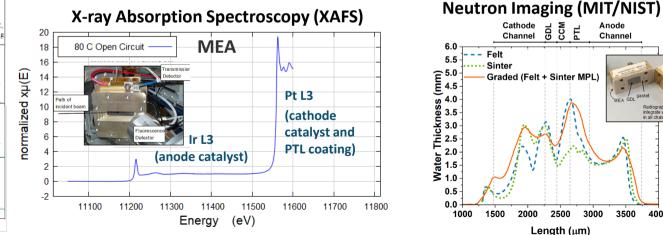
-Im(Z) (m

- ~28 μ V / hr at 3 A/cm²
 - ~ 7 μ V / hr ohmic, 21 μ V_{HER-free} / hr
 - Slower decay of ~ 11 μ V_{HER-free} / hr at 0.1 A/cm²
- Understanding mechanisms of steady-state degradation:
 - Catalyst activity or surface area loss
 - Increasing catalyst layer resistance



Post-mortem characterization underway to inform mechanistic understanding.


Accomplishment: Cell Depolarization Mechanisms and Reference Electrodes for Start/Stop Durability



Accomplishments: Developed Operando Characterization

- Operando characterization provides insight into:
 - Oxidation state of anode catalyst impacting OER activity and degradation processes (XPS, XAFS)
 - Through plane water distribution impacting cell resistances and transport (Neutron imaging)
- · Advanced characterization techniques enable observations of processes within operating electrolyzers and inform model development

integrate water

4000

Annual AOP/SAB Planning Meeting

Argonne National Lab: Sept 11-13, 2023