
Shunt-currents in 
Alkaline Water-Electrolyzers (AWE) 
and Renewable Energy
Egil Rasten
Nel Hydrogen Electrolysers

AWST Pathways Annual Meeting
11th June 2024



Agenda 1. Challenges

2. Shunt-currents explained

3. Energy efficiency

4.Electrode stability

5. Summary

2



Challenges of high shunt-currents and renewable 
energy with dynamic/intermittent operation

• The challenges applies to: 
• LARGE AWE-stacks+high-pressure+internal manifold system

• High Specific Energy Consumption (SEC)
• Loss in current efficiency under intermediate- and low-load operation

• Reduced lifetime
• Corrosion and electrode stability under shut-down and deep discharge conditions

• Reduced flexibility
• Gas-impurities and limited low-load operation

• Increased safety risk
• Actual current density in the cells is lower and gas cross-over and lye-mixing have 

higher impact

• Secondary electrolysis may compromise the gas impurity

• +additional topics

INTRODUCTION
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Norsk Hydro plant Glomfjord, Norway

1951-1991

1905

Norsk Hydro formed

World leading 

fertilizer company

1929

Production of 

AWE in NH

1993

Norsk Hydro Electrolysers

Formed as subsidiary of NH

2014

The heritage of AWE-production in Norway

Green hydrogen

20111991

Electrolyser plants 

shut down

Large-scale AWE plants for fertilizer production

5MW test plant, Notodden, Norway ~1928

(Holmboe-cellen, monopolar)



• Designed to operate at a fixed and high load

• Hydro-electric power the main power source

• Lesser focus on energy efficiency

• Companies like Norsk Hydro produced 
electrolyzers, operated the plants and owned 
the power plants

• Over the past 30-40 years water-electrolysis has 
been a niche application on the small-scale

• Historically low awareness around shunt-

currents on AWE and its impact under 

dynamic and intermittent operation
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AWE in the past

Norsk Hydro plant Vemork, Norway, 1929-1988



Shunt-currents (briefly) 
explained
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Shunt-currents in a bipolar electrolyzer
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• A portion of the current applied to the stack is being shunted via the common manifold system 

and bypassing the cells without contributing to production

• The magnitude of shunt-currents is given by the overall stack-polarization and the ohmic resistivity 

of the lye inside the manifolds
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Different manifold design for different applications
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Outlet manifolds

Inlet manifolds

Classic AWE with internal manifold system

Outlet header

(manifold)

Inlet header

(manifold)

Outlet ports

Inlet ports

Typical membrane-chlorine electrolyzer with 

external manifold system

Inlet/outlet port length ~ centimeter-size Inlet/outlet port length ~ meter-size 



Energy efficiency and 
shunt-currents under 
dynamic load
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Model to calculate shunt-currents

• Compare 100-cell and 200-cell stacks under 
variable load conditions

• A model to calculate shunt-currents is copied 
from Jupudi et.al. [1]
• Takes into account the design and dimensions of 

the manifold system, gas fraction in outlet lye and 
cell voltage, all represented as electrical resistors 
in an analog circuit model

• Model parameters are chosen to represent 
more realistic values of large-scale stacks and 
are given in Table I

• Cell voltage given by a simple Tafel-equation 
with values in Table II

• Nominal load is assumed 10 kA

10 1. Jupudi, R.S., Zappi, G. & Bourgeois, R. Prediction of shunt currents in a bipolar electrolyzer stack by difference calculus. J Appl Electrochem 37, 921–931 (2007)

Ucell:  cell voltage (V)

I:  current (A)



Cell current and cell voltage dynamics over the 
stack-length
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Current efficiency and energy consumption vs. 
load and number of cells
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Expected range



Large-scale high-pressure AWE electrolyzers with 
simple and internal manifold (2016)

• 3 MW high-pressure AWE-plant in Finland
• Pressure: 16 bar

• Stack: 2x163 cells

• SEC dramatically increases towards lower load due to 
loss in current efficiency

• Low-load limit increases due to bad gas-purity

• Not favorable under dynamic loads and operation with 
renewable energy

• Plant delivered by HydrogenPro and Chinese based 
Tianjin Hydrogen Mainland Equipment in 2016
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Source: G. Sakas, A. I-Rioja, S. Pöyhönen, A. Kosonen, V. Ruuskanen, P. Kauranen, J. Ahola, “Influence of shunt currents in industrial-scale alkaline water electrolyzer plants”, Renewable Energy, 

Volume 225, May 2024, 120266

Hydrogen production (kg/h)

Load 50% 100%

Current efficiency 60 85

SEC (kWh/Nm3) 6.3 5.5
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Electrode degradation 
and shunt-currents 
under intermittent 
operation
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At full load

At low load



Discharge under shutdown

• The overall polarity over the cell stack, and the migration field over the manifold system, is driving the shunt-currents
• Independent on current direction inside the cells

• Under discharge the reverse current inside the cells must balance the shunt-currents over the manifold system 
leading to a much higher discharge current from the center of the stack and lower towards the endplates

• Stack polarization and shunt-currents will immediately start to decrease
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At shut-down



Discharge of large membrane chlorine-
electrolyzer stack

• Typical discharge behavior of a membrane-
chlorine electrolyzer (126 cells)
• Using Voltage Monitoring System to measure cell 

voltages

• Discharge is always faster towards the center 
position

• Electrodes in membrane-chlorine electrolyzers 
are often prone to corrosion in the center-cells

• All bipolar electrolyzers with a common manifold 
system will show the same U-shape behavior in 
current and cell voltage

• Corrosion depends on the discharge potential of 
oxygen and hydrogen electrode
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Prone to corrosion
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Pourbaix diagram showing the thermodynamically 
stable phases on nickel

• Material stability under shutdown can be 

understood from the Pourbaix diagram

• At low potentials nickel is in immune state

• At high anodic potentials nickel forms stable 

oxides

• Cell voltage will be the difference in potential of 

oxygen and hydrogen electrode
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Pourbaix diagram showing the thermodynamically 
stable phases on nickel

• During shutdown and discharge the potential 

of oxygen and hydrogen electrode will move 

into the non-stable region (HNiO2
-) being 

prone to corrosion

• Corrosion on one or the other electrode 

depends on to how much each respective 

electrode is being polarized
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Discharge potentials must be understood

• How much the two electrodes are discharged depends on

• Capacitance, discharge kinetics, shunt-currents and their position in stack

• Discharge behavior can to some extent be determined from their respective cyclic 

voltammograms 

• Hydrogen Electrode: Platinum Group Metal (PGM)

• Oxygen Electrode: Nickel

• Discharge currents will follow the dotted arrows on each electrode 

• The discharge current on the two electrodes must at all time be equal

• Once the potential of the oxygen electrode has passed over the nickel-redox peak 

at 1.3 V, the oxygen electrode will have to discharge much faster/further to 

accommodate the discharging current of the hydrogen electrode

• Potential on the nickel electrode may quickly move down to HER potentials

• At cell voltage = 0.25 V; oxygen electrode polarized by 1 V, hydrogen electrode only 

polarized by 0.26 V

• Nickel electrode may go down to potential for hydrogen evolution

• Hydrogen and oxygen electrodes must be matched with respect to their discharge 

properties and material stability to avoid extreme polarization of either electrodes

• One way to come around the stability issue under shutdown is to enable current 

protection

• Requires minimal shunt-currents
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PGM

Nickel



• High-pressure large AWE-stacks with 

conventional internal manifold system may 

have serious challenges with shunt currents 

in combination with renewable energy 

operation

• Low CE and high SEC

• Increased electrode corrosion and shorter 
lifetime of stack

• Improved manifold design  is required to 

enable high-pressure AWE and large stacks in 

combination with renewable energy system

Summary
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AWE technology by Nel - now and future

• Atmospheric AWE

• Shunt-currents blocked by large gas fraction and 
current efficiency relatively high over the load range

• Nickel based electrodes 
• Resilient towards corrosion during shutdown

• Low current density and atmospheric pressure => large footprint

• Next generation high-pressure AWE

• Internal, but advanced manifold system to mitigate 
shunt-currents

• High energy efficiency over the entire load range

• Enabling current-protection during shutdown 
• Use of advanced non-PGM electrodes 

• VMS-ready 
• Better surveillance for increased safety, preventive maintenance 

and process optimization
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