

kiwa

Standardization and protocol development for High-Temperature Electrolysis

Stephen McPhail, PhD BD Manager Hydrogen Chair Italian National Committee IEC TC105

6th Annual Advanced Water Splitting Technology Pathways Benchmarking & Protocols Workshop 11 June 2024

Contents

- Short introduction to Kiwa: global, hydrogen and industry
- The role of regulations, codes and standards
- Key electrolyser protocols
- Test protocols the new frontier
- Contact information

This is **what we do** at Kiwa

Creating trust, driving progress. That's what we do for our customers. We support our core activities with three additional activities.

We operate fully independently and impartially. Therefore, we strictly separate our certification, testing and inspection services from adjacent activities like offering training courses, consultancy and data-related or data-driven services.

This is who and where we are today

Your partner in the hydrogen sector

• State of the art hydrogen laboratories

۲

- One-stop-shop for testing, inspection, certification and consultancy
- For all parts of the hydrogen supply chain
- In all phases of industrial project development

Kiwa – from NoBo to knowledge partner

kiwa

... from **component** sourcing to **consumer** off-take

Quality & safety through Regulations, codes & standards

Regulations, codes and standards

(RCS):

- provide <u>requirements</u> (e.g. effectiveness, reliability) with regards to the <u>means</u> (e.g. procedures, prevention, mitigation) used to achieve performance/safety <u>targets</u>.
- provide <u>design criteria</u> ensuring fitness for purpose by relating <u>requirements</u> to <u>conditions of use</u> and <u>accepted solutions</u> for meeting the performance requirements or safety targets

Quality & safety through Regulations, codes & standards

Pre-Assessment (Design Phase) Costructional Review (Prototype phase) **Type Testing** (Prototype phase) Certificate(s) (Production phase)

CE

Identification of all applicable directives and relevant standards

Review of the risk assessment

Design Review

Pre-assessment report Component conformity
 Assessment of the functional safety
 Compliance with requirements Tests at accredited facilities or at client's site in witness
 ISO 17025 accredited tests

Test report

Test programme

kiwa

Certificate of "presumption of conformity"

 Certificate of compliance with NoBo-required directives

Certificate

Quality & safety through Regulations, codes & standards

Pre-Assessment (Design Phase)

- Identification of all applicable directives and relevant standards
- Review of the risk assessment
- Design Review

Pre-assessment report

Which standards are relevant for electrolysers?

- **ISO 22734** ("Hydrogen generators using water electrolysis") and all normative references therein (e.g. on pressure vessels, hydrogen piping, safety of machinery, explosion safety etc.)
- IEC 62282-8 series ("Energy storage systems using fuel cells in reverse mode") insofar as they relate to electrolysis operation (not fuel cell operation)
- European Commission JRC Method: "EU harmonised testing protocols for high-temperature steam electrolysis"
- Any local/national standards/guidelines available

kiwa

5

ISO 22734 ("Hydrogen generators using water electrolysis")

Test methods					
5.1	Gener	eneral			
5.2	Type (qualification) tests				
	5.2.1	General requirements	31		
	5.2.2	Basic test arrangements	31		
	5.2.3	Electrical tests	33		
	5.2.4	Pressure test			
	5.2.5	Leakage test			
	5.2.6	Dilution tests	37		
	5.2.7	Protection against the spread of fire tests			
	5.2.8	Temperature tests			
	5.2.9	Environmental test			
	5.2.10	Combustible gas mixture safety test	39		
	5.2.11	Spillage, overflow, and drain test	39		
	5.2.12	Mechanical strength	39		
	5.2.13	Stability test	39		
	5.2.14	Vent tests	39		
	5.2.15	Operational functional tests	41		
	5.2.16	Minimum generation rate test	41		
5.3	Routi	ne tests	42		
	5.3.1	General requirements	42		
	5.3.2	Continuity of the protective bonding circuit test	42		
	5.3.3	Voltage test	42		
	5.3.4	Inspection of electrical equipment in hazardous areas	42		
	5.3.5	Safety-control circuit functional tests	42		
	5.3.6	Leakage test	42		

IEC 62282-8-101 ("Energy storage systems" using fuel cells in reverse mode – Test procedures for performance of solid oxide cells & stacks including reversible NB. Other High-T Electrolysis technologies: operation")

Molten carbonate electrolyte

Proton-conducting ceramics

Similar features, different materials

IEC 62282-8-101 ("Energy storage systems using fuel cells in reverse mode – Test procedures for performance of **solid oxide cells & stacks** including reversible operation")

Te	Test procedures and computation of results34						
7.1	(General	34				
7.2	(Current-voltage characteristics test	34				
7.	2.1	Objective of this test	34				
7.	2.2	Test method	34				
7.	2.3	Data post-processing	35				
7.3	I	Effective reactant utilization test	35				
7.	3.1	Objective of this test	35				
7.	3.2	Test method	35				
7.	3.3	Data post-processing	36				
7.4	I	Durability test	36				
7.	4.1	Objective of this test	36				
7.	4.2	Test method	37				
7.	4.3	Data post-processing	37				
7.5	-	Temperature sensitivity test	37				
7.	5.1	Objective of this test	37				
7.	5.2	Test method	38				
7.	5.3	Data post-processing	38				
7.6	:	Separation of resistance components test via electrochemical impedance	~~				
-	~ 1	Spectroscopy	39				
7.	6.1	Objective of this test	39				
· · ·	6.2	Test method	39				
· · ·	6.3	Data post-processing	40				
1.1	7 4	Current cycling durability test.	40				
7.	7.1		40				
/. 7	7.2	Dete peet processing	41				
70	.7.3	Data post-processing	41				
7.0 7	0 1	Objective	41				
7.	0.1		41				
7.	0.2		41				
70	.0.3	Data post-processing	42				
7.9	ا 0 1	Objective of this test	42				
7.	0.1	Test method	42 40				
(. 7	0.2		42				
· · ·	5.5		43				

IEC 62282-8-101 ("Energy storage systems using fuel cells in reverse mode – Test procedures for performance of **solid oxide cells & stacks** including reversible operation")

kiwa

IEC 62282-8-201 ("Energy storage systems using fuel cells in reverse mode – Test procedures for performance of **power-topower systems**")

IEC 62282-8-201 ("Energy storage systems using fuel cells in reverse mode – Test procedures for performance of **power-topower systems**")

	6 Test r	nethods and procedures	23
	6.1	General	23
rage systems	6.2	Electric energy storage capacity test	23
e – Test	6.3	Rated electric power input test	24
f power-to-	6.4	Rated net electric power output test	25
	6.5	Roundtrip electrical efficiency test	25
	6.5.1	General	25
	6.5.2	Test procedure	26
	6.5.3	Calculation of the roundtrip electrical efficiency	27
	6.6	Other system performance tests	27
	6.6.1	System response test, step response time and ramp rate	27
	6.6.2	Minimum switchover time test	28
	6.6.3	Stand-by state loss rate test	
	6.6.4	Heat input test	
	6.6.5	Recovered heat output test	
	6.6.6	Hydrogen input and output rate test	
	6.6.7	Acoustic noise level test	31
	6.6.8	I otal harmonic distortion test	31
	6.6.9	Discharge water quality test	31
	6.7 Cc	omponent performance test	31
	6.7.1	Electrolyser performance test	31
	6.7.2	Hydrogen storage performance test	32
	6.7.3	Fuel cell performance test	32
	6.7.4	Water management system performance test	33
	6.7.5	Battery performance test	33
	6.7.6	Oxygen storage performance test	

European Commission JRC Method: "EU harmonised testing protocols for high-temperature steam electrolysis"

→ A comprehensive review and compound of protocols in the scientific, project-based and standardisation literature

Free download at:

JRC VALIDATED METHODS, REFERENCE METHODS AND MEASUREMENTS REPORT

EU harmonised testing protocols for hightemperature steam electrolysis

Performance and durability of stacks and systems

https://www.clean-hydrogen.europa.eu/document/download/0f391a84-4fba-4873-bf81-4d514847cc6c_en?filename=EU%20harmonised%20testing%20protocols%20for%20hightemperature%20steam%20electrolysis%2C%20performance%20and%20durability%20of%20stacks%20and% 20systems.pdf

Electrolyser test protocols – the new frontier

High-temperature electrolysis:

- Achieve 80,000 h durability
- Provide robust
 technology for
 industrial
 processes and
 large projects:
 high liability
- Need test protocols for accelerated performance & durability verification

kiwa

Electrolyser test protocols – the new frontier

Accelerated Stress Tests aim to:

- Design and verify component improvement with time/cost effectiveness
- Build reliable models for Remaining Useful Life prediction
- Improve stack/modules
 Diagnostics, Control and Real Time Optimization hardware & software
- Provide the basis for reliable technology implementation

Ad hoc activity in IEC TC105:

- Review of technological bottlenecks & diagnostics
- Review of accelerated testing approaches
- Technical Report due to be published 2024

Kiwa references: **electrolysers**

We create trust

Stephen McPhail stephen.mcphail@kiwa.com Partner for Progress

Kiwa services and competences: electrolysers

- Support in alignment between stack suppliers
- Support / Assessment of risk assessments for electrolyzer design & integration
- Audits of suppliers & subcontractors according to relevant standards or Cepsa standard operating procedure (SOP)
- Electrolyzer testing in accredited labs (ISO 22734, IEC 62282) up to 200 kWe (40Nm3/h)
- Notified-Body services: certification of assemblies and components, inspections during installation and final documentation
- Installation approvals and inspections

Kiwa services and competences: electrolyser plants

- Bankability assessment
- High level risk assessments
- Support in plant integration philosophies, facility citing studies, ...
- Support/Assessment of risk assessments for plant integration
- Installation approvals and inspections
- O&M Readiness Plan for electrolyser
 plants

$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\$

kiwa

Interconnectivity creates new risks!