

CA Hydrogen Hub and Advanced Electrolysis R&D at LBNL

Benchmarking Workshop, ASU, Los Angeles | June 11, 2024

Adam Z Weber

Leader, Energy Conversion Group | ESDR Lawrence Berkeley National Lab

Chief Technology Office Alliance for Renewable Clean Hydrogen Energy Systems (ARCHES)

LAWRENCE BERKELEY NATIONAL LABORATORY

Hydrogen @ Lawrence Berkeley National Laboratory

STORE

Systematic research to solve applied problems informed by technoeconomic, life-cycle, and energy analysis

Have been working on hydrogen technologies for over 3 decades

Hold leadership levels in major applied and fundamental R&D DOE consortia

Focus holistically on the issues and advance the science and technology to establish innovation pipelines

Operate as an honest broker in examining different technologies, pathways, and materials for strategic RDD&D

MAKE

PRODUCTION

Hydrogen @ Lawrence Berkeley National Laboratory

STORE

Systematic research to solve applied problems informed by technoeconomic, life-cycle, and energy analysis

Have been working on hydrogen technologies for over 3 decades

Hold leadership levels in major applied and fundamental R&D DOE consortia

Focus holistically on the issues and advance the science and technology to establish innovation pipelines

Operate as an honest broker in examining different technologies, pathways, and materials for strategic RDD&D

MAKE

PRODUCTION

Focus on interface discovery and understanding

- Material is the crosscut and focuses more on known materials
- Suild interface complexity over time

Use Digital-Twin paradigm

Physical and virtual worlds are brought together in a unity of theory and experiments to interrogate and interpret simultaneously

- Overcome "small data" problem

• In-Machina experiments

Sepresentative *operando* studies

Robust PIER plan

✤ Focus on developing workforce of the future

- Robust Data Management plan
 - & Ensure (meta)data coherence

Physical and virtual data combine to fill in knowledge efficiently

Ionomer-catalyst interactions

- Three different Ir oxide formulations
 - Charging and bonding interactions (association constant K_A) result in different ink structures
 - Impacts Nafion thin-film swelling and structure
 - Scorrelated to overall cell performance

Ionomer-catalyst interactions

- Three different Ir oxide formulations
 - Charging and bonding interactions

 (association constant K_A) result in different
 ink structures
 - Impacts Nafion thin-film swelling and structure
 - Scorrelated to overall cell performance

Conformation of ionomer chains on metallic surface with mixed oxide coverage

lonomer film swells more with nano-phase separation

Stronger binding of ionomer on (OOH) functionalized surface disrupting ionomer structure

lonomer film swells less with reduced phase-separation

Ir(O₂) - thermally grown

Weaker catalyst-ionomer binding modulated by complete oxide coverage

lonomer swells more with stronger anisotropy

Ionomer-catalyst interactions

- Three different Ir oxide formulations
 - Charging and bonding interactions (association constant K_A) result in different ink structures
 - Impacts Nafion thin-film swelling and structure
 - Scorrelated to overall cell performance

Conformation of ionomer chains on metallic surface with mixed oxide coverage

lonomer film swells more with nano-phase separation

Stronger binding of ionomer on (OOH) functionalized surface disrupting ionomer structure

lonomer film swells less with reduced phase-separation

Ir(O₂) - thermally grown

Weaker catalyst-ionomer binding modulated by complete oxide coverage

lonomer swells more with stronger anisotropy

PEC

(m²)

Faraday efficiency

%

0.5 0.0001 1e+02 5e-07

(hr)

(m²)

(hr)

2.0

12

LAWE

2

2.0

J. Electrochem. Soc. DOI: 10.1149/1945-7111/ad4fe6

J. Electrochem. Soc. DOI: 10.1149/1945-7111/ad4fe6

JK, Lee and X, Peng* *et al. Nature Communication* 13

ARCHES Alliance for Renewable Clean Hydrogen Energy Systems (ARCHES) – California H2Hub

Regional Clean Hydrogen Hubs

Build regional clean H2Hubs across the country to create networks of clean hydrogen producers, consumers, and local connective infrastructure to accelerate use of clean hydrogen.

H2Hubs Demand-Side Support Initiative

- Sept 2023: Announced RFP. Responses were due on November 2, 2023.
- Jan 2024: H2DI was selected as the independent entity.
- Learn more about the initiative here: <u>https://www.youtube.com/watch?v=QgOL_Xg7K1Q</u>

H2Hubs Current Status

October 2023: DOE announced 7 projects selected for <u>award negotiations.</u>

Selected Regional Clean Hydrogen Hubs

Pacific Northwest Hydrogen Hub

California Hydrogen Hub

Alliance for Renewable Clean Hydrogen Energy Systems (ARCHES) Heartland Hydrogen Hub

0

Midwest ° ° Hydrogen Hub Midwest Alliance for Clean Hydrogen (MachH2)

Gulf Coast Hydrogen Hub

HyVelocity H2Hub

Appalachian Hydrogen Hub

Appalachian Regional Clean Hydrogen Hub (ARCH2)

Mid-Atlantic Hydrogen Hub

Mid-Atlantic Clean Hydrogen Hub (MACH2)

Proposed H2 Facility

80

Selected H2Hubs

California's Clean Energy Commitments

Clean Energy

energy targets)

SB 100 (100% clean energy) SB 423 (firm zero carbon resources) SB 1020 (interim clean

Clean Transportation

Exec. Order 79-20 (ZEVs) ZEV Regulations Advanced Clean Fleets Low Carbon Fuel Standard

Climate Change

AB 32 SB 32 (2030 target) AB 1279 (carbon neutrality) Governor/Scoping Plan goals (sustainable aviation fuel, carbon removal, etc..)

Market Transitions

Cap-and-Trade Governor's infrastructure package and Executive Order ARCHES/Hydrogen Hub application

Alliance for Renewable Clean Hydrogen Energy Systems

ARCHES ARCHES Principles

< Statewide

Leveraging California's size and diverse geography and economy to produce, transport, store, and use H_2 at scale with multiple clusters of each, provides an ideal H_2 test-bed for the nation

🔮 Green

California has long led the nation and the world in environmental innovation and policy and will do so again with clean H_2 .

Stakeholder and Community Engaged

Built-in and ensured at all stages of the process

Equity and Justice Centered

Prioritized in all decisions with a focus on California's impacted, disadvantaged, low-income, and tribal communities.

Aligned with State Interests

To move California toward a robust H₂ economy and marketplace, and a cleaner, greener future.

Solution-Oriented

Focused on implementation with targeted research and innovation to achieve the DOE's \$2/kg 5-year goal and the administrations \$1/kg 10year goal.

Objective and Unbiased

Representing and ensuring the interests of all parties

S Multi-dimensional

Considering all aspects of a successful H_2 economy.

Connected

Within California and other $\rm H_2$ hubs.

Enables Sustainable H² Economy and the ARCHES Ecosystem

> Realizes Co-Funding and Market Viability

Provides Realizable and Ready Actualization

Provides Strong Community Benefits Chosen from an open RFP followed by indepth negotiations that went into adoption scenarios and systems analysis

- Value proposition
- Market acceptance
- Resource maturity
- Community acceptance
- Project integration

The Resilient H₂ Ecosystem for California

- ARCHES DOE H2Hub = Tier 1 = DOE funding through H2Hub Program
- **Tier 2** = viable project but no DOE funding through the DOE H2Hub Program
- ARCHES Ecosystem = Tier 1 + Tier 2
- **Tier 2 is growing** through our open rolling RFP process

Feedstock Renewable Electricity Ä 1 \approx Biogenic N Municipal Waste Woody Waste Water

ARCHES ARCHES Hydrogen Flow

ARCHES ARCHES Hydrogen Flow

ARCHES Hydrogen Flow

ARCHES

ARCHES ARCHES Hydrogen Flow

Loss

ARCHES ARCHES Systems Approach Balances Production and Offtake Over Time

ARCHES ARCHES Systems Approach Initiates Large Future Growth

Life Cycle Assessment

Carbon Intensity & Human Health Impacts were modelled at the individual project level, the regional level, and at the hub level

PM_{2.5}

System Boundary

Carbon Intensities of Produced Hydrogen by Region

Region	Carbon Intensity	Quantity
	kgCO2eq/kgH2	MTPD
Northern CA	-1.13	41
Northern CA Valleys	2.15	185
Southern CA Valleys	-6.03	140
Southern CA	2.89	149
Weighted Average	-0.15	515

*Reduced premature death, asthma, cancer, missed work days

Community Benefits Pathways Highlights

- Focus on the most impacted communities
 - Many touchpoints and opportunities for engagement
- Chief Community Officer leading ARCHES CB efforts
 - Hub-level community benefits team with on-theground engagement and partnership
- Community Benefits Auditing Team for accountability
- Labor and Workforce
 - \$229M in workforce development
 - PLAs for all projects
 - Broad educational collaboration: UCs, CSUs, California Community Colleges, and labor training institutes
- Community Engagement and Support
 - \$150M in direct community benefits
 - Local CB teams for local engagement and influence

ARCHES is a public-private partnership to create a sustainable renewable, clean hydrogen (H₂) market and ecosystem in California and beyond by 2030

ARCHES goals encompass

- Kickstart commercial viability of H₂
 - □ Focus on hard-to-decarbonize sectors: Ports, Power, HD Transportation
 - □ Initiate expansion to: Heavy Industry, Aviation, Maritime, Agriculture, and others
- Ramp production/offtake of renewable, clean H₂ from 30 tonnes per day (TPD) to 500+ TPD
- Produce measurable benefits for California communities, with robust monitoring, and strong accountability
- > Develop a H₂ workforce for California, and a H₂ workforce development model for the nation
- Meet CA and National carbon neutrality goals