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Hydrogen @ Lawrence Berkeley National Laboratory

Systematic research to solve applied problems informed by technoeconomic, life-cycle,
and energy analysis

Have been working on hydrogen material development performance, durability
hnologies f 3d d integration, characterization efficiency optimization
technologies for over 3 decades fundamental understanding < technology improvement

Hold leadership levels in major applied
and fundamental R&D DOE consortia

MILLION MILE
FUEL CELL TRUC

Focus holistically on the issues and
advance the science and technology to
establish innovation pipelines

CLEAN HYDROGEN TECHNOLCG‘V
ORTIUM

Hydirogen fmm
Next-genaration
Electrolyzers urr Warter

Hz2NEW

Operate as an honest broker in examining
different technologies, pathways, and
materials for strategic RDD&D B

MAKE STORE ANALYZE
STORAGE/DELIVERY SYSTEM ANALYSIS

TRL: Technology Readiness Level
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Center for lonomer-based Water Electrolysis

* Focus on interface discovery and understanding ﬁ

L, Material is the crosscut and focuses more on known
materials

% Build interface complexity over time

* Use Digital-Twin paradigm Physical and virtual data combine to illin knowledae efficiently

% Physical and virtual worlds are brought together in a

unity of theory and experiments to interrogate and 13: Electromechanochemistry

interpret simultaneously /\
- Overcome “small data” problem k
* In-Machina experiments /T Materials | >
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% Representative operando studies

* Robust PIER plan
% Focus on developing workforce of the future
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Understanding of ionomer interfaces during
* Robust Data Management plan g S |
Loperatlon by combining multiple knowledge pathways Y
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% Ensure (meta)data coherence .
T2: Characterization T4: Modeling/Theory



Center for lonomer-based Water Electrolysis

lonomer-catalyst interactions

* Three different Ir oxide formulations

% Charging and bonding interactions
(association constant K,) result in different
ink structures

KA (L/mol)

- Impacts Nafion thin-film swelling and
structure

% Correlated to overall cell performance
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Center for lonomer-based Water Electrolysis

lonomer-catalyst interactions
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with nano-phase separation with reduced phase-separation with stronger anisotropy



Center for lonomer-based Water Electrolysis
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HydroGEN

mSOEC
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H2NEW
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H2NEW

Current density at 1.3V (mA/cm?)

Current density (mA/cm?)

800
700
600
500
400
300
200
100

SOEC

800 + 50% H,0
600 - w
400 ~
200 +
3% H,0
0 T T
80 100
Time (hrs)

| Thermal cycling cell

¢ o —¢ - —e

100

200 300 400 500

Time (h)

LAWE

Bubble resistance
244 Mass transfer

Cathode kinetics

Anode kinetics

Applied Voltage (V)

Ohmic (separator)

Thermodynamics

05 1 15 2
Current density (A cm™)
24
o ° o

. 22f e @ e 8
s e®. @8 o ©°
) @s @@ o
v 1) @ (=]
£ 0e82g0°
g gaeg
2 o
Q
()

QO SS-anode&cathode

O SS-anode-Ni-cathode

O Ni-anode-55-cathode

O Ni-anode&cathode
1

1 1
0.0 0.5 1.0 15 2.0

Current density (A cm?)

J. Electrochem. Soc. DOI: 10.1149/1945-7111/ad4fe6

PEMWE

® 2GDL10-0.25
241 @ 2GDL50.125
® 2GDL3-0.15
2GDL10-0.25-Laser
—. 22} ¢ 2GDL5-0.125-Laser
2 @ 2GDL3-0.15-Laser
©
- 20 ’ i
[}
8 114
Qg 9!
T 'Y ,
Q . ) Laser Ablation
1.6F o] . Nafion N117
] A: 0.40 mg/em? TKK IO,
C: 0.1 mg/lem?PtC
1.4} 80°C

0.0

05 10 15 20 25 30 35 40
Current density [A/cm?]

Lee et al. Applied Energy 336 (2023) 120853

r
I~
T

h
)
T

Cell potential [V]
s 8

—
o~
T

14+ , ® lonomer-free Ir PTE 0.187 mgem™2 |

lonomer-free Ir PTE 0.033 mg cm™2

lonomer-free Ir PTE 0.05 mg em™2 1

lonomer-free Ir PTE 0.085 mg cm™2

0

JK, Lee and X, Peng* et al. Nature Communication 13

500 1000 1500 2000 2500 3000 3500 4000
Current density [mA cm™2]




mAlliance for Renewable Clean
m Hydrogen Energy Systems (ARCHES) -
California H2Hub



Regional Clean
Hydrogen Hubs

Build regional clean H2Hubs across the
country to create networks of clean
hydrogen producers, consumers, and
local connective infrastructure to
accelerate use of clean hydrogen.

H2Hubs Demand-Side Support Initiative

« Sept 2023: Announced RFP. Responses were due on
November 2, 2023.

« Jan 2024: H2DI was selected as the independent
entity.

« Learn more about the initiative here:
https://www.youtube.com/watch?v=0QgOL_Xqg7K1Q

H2Hubs Current Status
* October 2023: DOE announced 7 projects
selected for award negotiations.



https://www.youtube.com/watch?v=QgOL_Xg7K1Q

Selected Regional Clean Hydrogen Hubs

Heartland
Hydrogen Hub

Heartland Hub (HH2H)

Pacific Noorthwest
Hydrogen Hub

PNWH2

Midwest ° ° o

: : Hydrogen Hub
Cal Ifornla Midwest Alliance for Clean ° o

Hydrogen Hub nicegeniitachk2) g \£° Mid-Atlantic

Alliance for Renewable Clean o
Hydrogen Energy Systems AppaIaChlan Hyd rogen HUb
Mid-Atlantic Clean Hydrogen

8° (ARCHES)

. Hydrogen Hub Hub (MACH2)
. o Appalachian Regional Clean
Gulf Coast Hydrogen Hub (ARCH2)

Hydrogen Hub

HyVelocity H2Hub
(o) @,

‘ Proposed H2 Facility
‘ Selected H2Hubs

Office of Clean Energy Demonstrations




m California's Clean Energy Commitments
i)

® 0 @&

o

Clean Energy
SB 100 (100% clean energy)

SB 423 (firm zero carbon
resources)

SB 1020 (interim clean
energy targets)

Clean Transportation
Exec. Order 79-20 (ZEVs)

ZEV Regulations

Advanced Clean Fleets

Low Carbon Fuel Standard

Climate Change

AB 32

SB 32 (2030 target)

AB 1279 (carbon neutrality )

Governor/Scoping Plan goals
(sustainable aviation fuel,
carbon removal, etc..)

Market Transitions
Cap-and-Trade

Governor’s infrastructure
package and Executive Order

ARCHES/Hydrogen Hub
application

17



m Who i1s ARCHES
i)

Alliance for ARCHES DOE

O Q O

Renewable
Clean

Hydrogen vier [ i
Energy et
Systems




m ARCHES Principles

& Statewide & Equity and Justice & Objective and Unbiased
Leveraging California’s size and Centered Representing and ensuring the
diverse geography and economy Prioritized in all decisions with a interests of all parties
to produce, transport, store, and focus on California’s impacted,
use H, at scale with multiple disadvantaged, low-income, and & Multi-dimensional

clusters of each, provides an ideal  tribal communities.

Considering all aspects of a
H, test-bed for the nation g P

& Aligned with State Interests successful H, economy.

& Green To move California toward a robust
California has long led the nation H, economy and marketplace, and a & Connected
and the world in environmental cleaner, greener future. Within California and other H,
innovation and policy and will do hubs.

& Solution-Oriented
Focused on implementation with

so again with clean H,.

< Stakeholqer and targeted research and innovation to
Community Engaged achieve the DOE's $2/kg 5-year goal
Built-in and ensured at all stages and the administrations $1/kg 10-

of the process year goal.




m Project Selection
&l

N R E N e e Al U Chosen from an open RFP followed by in-
and the ARCHES Ecosystem depth negotiations that went into adoption
scenarios and systems analysis

Realizes Co-Funding and N
Market Viability » Value proposition

Provides Realizable and » Market acceptance
Ready Actualization > Resource maturity

Provides Strong » Community acceptance
Community Benefits

» Project integration

20



BT The resilient H, Ecosystem for California
~F 8

 ARCHES DOE H2Hub =Tier 1 = DOE funding through
| _ H2Hub Program
— et QECP':E?;':;"’ ] Tier 2 = viable project but no DOE funding through the
@ " @ | DOE H2Hub Program

* ARCHES Ecosystem =Tier 1 + Tier 2

. E ¥ 2 — @ e Tier 2 is growing through our open rolling RFP process
Projects | -

*o o

et = 3 400+ OEMs, Technology ]

Tier Providers & Suppliers




ARCHES Hydrogen Flow
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ARCHES Hydrogen Flow
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ARCHES Hydrogen Flow
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: ARCHES Hydrogen Flow
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ARCHES Hydrogen Flow

Production End Use End Use
Region Region Sector
Other
1, producers
u:({'c‘:n(;l to hub NOI‘Cal
o I o NorcCal
Water ——p T ™ tomrs [ 29 MTPD POWER
DyERE Tanks
Grid —> NCV
438 MTPD @' JE® |, Transportation
to HRS
‘ Tanks
Marketplace 223 MTPD PORT
Municipal m
Solid Waste ™ Biomass Eorss
Electricity, =»  17MTPD H. m -@’
Heat, Water ﬂ Buffering 63 MTPD
Biomass Buffering @ TRANSPORTATION
wmte[: T 6OMTPD Buffering Power
67.3-215.3 MTPD

Loss




H,

ARCHES Systems Approach Balances
Production and Offtake Over Time

Year 2023 (tpd)
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ARCHES Systems Approach Initiates
gl Large Future Growth

[ )
@ Production Sites _
M Transportation Sector
\ . Offtake Sites W Power Sector
) " Maritime Sector
% — Pipeline W Ports
\ M Industry

49%

® 190,000 46,723
MTPY MTPD
6,820 515
MTPY MTPD
- _. .. ................................ . ............ >

2023 2030 2032 2045




Life Cycle Assessment

Carbon Intensity & Human Health Impacts were modelled at the individual project
level, the regional level, and at the hub level

System Boundary

Cradle-to-Gate | BROPRIETARY, HIA, GREET ~ g =777 ooototooooooooooooooooooooooooooooe :
Inputs | Regional H L |
Electricity —> | IASEE ; . H, Distribution & H, End Use for [l
: : Transport & : ;
Natural gas —» Production St Point-of-Sale Fuel & Energy !
Water __, ! Oorage :
Biomass : HDSAM, CA GREET HDSAM & CA GREET PROPRIETARY, ARCHES !
Cooling fluids ! Pipeline CO, Transport & E
Other feedstocks : Saline Aquifer !
Fuels —> 1 Sequestration :
i PROPRIETARY |
L . EPA CARB ___________CAGREET EPA GREETICAO .
GREET, UTILITIES, EIA, eGRID
BenMAP. ARCHES Life Cycle Inventory Mercury
’ - H, hub H, emissions
|:| CO, End of Life GHG Water ansumptlon
NOx Water Withdrawal
Offset SO, Fuel Consumption
DPM
PRIMARY MODEL/ JY

DATA SOURCE PM, .




Life Cycle Assessment: Production

H,

Carbon Intensities of Produced Hydrogen by Region ,
Carbon Intensity Quantity \

Region
2 kgCO,eq/kgH, MTPD N\

North Central

Northern CA hialley (NCV)
Northern ™%

Northern CA Valleys California
(NorcCal) \

Southern CA Valleys

Southern CA

Weighted Average -0.15 515 Southern California
(SoCal) '

South Central
Valley (SCV)




ARCHES Community Benefits

A $2.95 i—+ Economic Value of increased health and

billion associated health costs savings per year*

A 222’4m ~g¢0 Number of jobs created

@, Fewer hospitalizations for respiratory &

b 4 2)097 ﬂ cardiac illness per year

v 13,292 @ Fewer work loss days per year

ARCHES-Hub disadvantaged
sites ~ communities

@ Nitrogen oxide net emissions avoided
¥ 6,900 B (MTPY)

v o’ ) Sulfur dioxide net emissions avoided
239 @ (MTPY)

v32e & Particulate matter net emissions
pm2spm10 avoided (MTPY)

low
income

Vv 48 s% Fewer premature deaths per year

A $380 Invested in community benefits &

|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
I . .

I million workforce development

*Reduced premature death, asthma, cancer, missed work days




Community Benefits Pathways Highlights

: Focus on the most impacted communities
ARCHES-Hub disadvantaged

et © communities « Many touchpoints and opportunities for engagement

Chief Community Officer leading ARCHES CB efforts

* Hub-level community benefits team with on-the-
ground engagement and partnership

Community Benefits Auditing Team for accountability

Labor and Workforce
« $229M in workforce development
income o « PLAs for all projects

 Broad educational collaboration: UCs, CSUs,
California Community Colleges, and labor training
institutes

Community Engagement and Support
« $150M in direct community benefits
» Local CB teams for local engagement and influence




Project Timeline

H,

0 Go/No-Go Decisions

% NEPA engagement D CBP Commitments Public
[Z4]

Ongoing engagement throughout phases 1-4

Implementation iy

Phases 1-4 Phase 1: D Phase 2: D Phase 3: Phase 4:

: Project ‘ . Install, Integrate, 0 Ramp-Up &
Detailed Plan ’ Development £ Construct Operate

Up to $20M DOE
funding, ~12-18
months

Up to 15% of total DOE DOE Funding to be DOE Funding to be
funding, ~2-3 years negotiated, ~2-4 years  negotiated, ~24 years




ARCHES Summary

H,

» ARCHES is a public-private partnership to create a sustainable
renewable, clean hydrogen (H,) market and ecosystem in California and

beyond by 2030

» ARCHES goals encompass
> Kickstart commercial viability of H,
O Focus on hard-to-decarbonize sectors: Ports, Power, HD Transportation
O Initiate expansion to: Heavy Industry, Aviation, Maritime, Agriculture, and others
» Ramp production/offtake of renewable, clean H, from 30 tonnes per day (TPD) to 500+ TPD

» Produce measurable benefits for California communities, with robust monitoring, and strong
accountability

» Develop a H, workforce for California, and a H, workforce development model for the nation
» Meet CA and National carbon neutrality goals

34
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